Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 113(3): 992-1000, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33626339

RESUMEN

Integrated bacteriophages (prophages) can impact host cells, affecting their lifestyle, genomic diversity, and fitness. However, many basic aspects of how these organisms affect the host cell remain poorly understood. Ralstonia solanacearum is a gram-negative plant pathogenic bacterium that encompasses a great diversity of ecotypes regarded as a species complex (R. solanacearum Species Complex - RSSC). RSSC genomes have a mosaic structure containing numerous elements, signaling the potential for its evolution through horizontal gene transfer. Here, we analyzed 120 Ralstonia spp. genomes from the public database to identify prophage sequences. In total, 379 prophage-like elements were found in the chromosome and megaplasmid of Ralstonia spp. These elements encode genes related to host fitness, virulence factors, antibiotic resistance, and niche adaptation, which might contribute to RSSC adaptability. Prophage-like elements are widespread into the complex in different species and geographic origins, suggesting that the RSSC phages are ancestrally acquired. Complete prophages belonging to the families Inoviridae, Myoviridae, and Siphoviridae were found, being the members of Inoviridae the most abundant. Analysis of CRISPR-Cas spacer sequences demonstrated the presence of prophages sequences that indicate successive infection events during bacterial evolution. Besides complete prophages, we also demonstrated 14 novel putative prophages integrated into Ralstonia spp. genomes. Altogether, our results provide insights into the diversity of prophages in RSSC genomes and suggest that these elements may deeply affect the virulence and host adaptation and shaping the genomes among the strains of this important pathogen.


Asunto(s)
Profagos , Ralstonia solanacearum , Genoma Bacteriano , Humanos , Profagos/genética , Ralstonia solanacearum/genética , Virulencia , Factores de Virulencia/genética
2.
Arch Virol ; 164(7): 1857-1862, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31065851

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of crucifers. Here, we report a virus that infects Xcc isolated from brassica fields in Brazil. Morphological, molecular and phylogenetic analysis indicated that the isolated virus is a new member of the genus Pbunavirus, family Myoviridae, and we propose the name "Xanthomonas virus XC 2" for this virus. The isolated virus has a narrow host range, infecting only Xcc isolates, and it did not infect unrelated bacteria. These results indicate that the isolated bacteriophage is highly specific for Xcc and may be a potential agent for biological control.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Brassica/microbiología , Myoviridae/clasificación , Myoviridae/aislamiento & purificación , Xanthomonas campestris/virología , Bacteriófagos/genética , Agentes de Control Biológico , Brasil , ADN Viral/genética , Genoma Viral/genética , Especificidad del Huésped , Myoviridae/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , Xanthomonas campestris/aislamiento & purificación
3.
Virus Res ; 244: 21-26, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29024687

RESUMEN

In the present work, we report a novel mycovirus that infects Alternaria alternata. The mycovirus has isometric particles of approximately 30nm and the genome consists of two molecules of dsRNA, dsRNA1 with 1833bp, encoding a putative RNA-dependent RNA polymerase (RdRp) and dsRNA2, with 1680bp in length, encoding the putative capsid protein (CP). RdRp analysis revealed low amino acid identity with RdRps with species in the genus Gammapartitivirus, and the alignment of the RdRp revealed all the six conserved motifs present in members of Partitiviridae. The putative coat protein (CP) analysis revealed similarity with the putative CP of Botryosphaeria dothidea partitivirus 1 (BdPV1), a divergent partitivirus. We propose that Alternaria alternata partitivirus 1 (AtPV1) is a novel species and comprises a distinct lineage related to genus Gammapartitivirus in the family Partitiviridae, apparently on the threshold of radiation of a new genus, together with BdPV1. Vertical transmission tests showed that AtPV1 was transmitted to 100% conidial progeny and standard curing was unable to eliminate it from the host, characterizing it as a persistent virus. The absence of a virus-free isogenic lineage prevented us from accessing the details of the interaction between AtPV1 and A. alternata. Therefore, it remains unclear whether the morphological plasticity observed or the inability of the A. alternata isolate AVi1 to cause disease in plants is associated with AtPV1 infection.


Asunto(s)
Alternaria/virología , Virus Fúngicos/genética , Genoma Viral , Filogenia , Virus ARN/genética , ARN Viral/genética , Secuencia de Bases , Proteínas de la Cápside/genética , Virus Fúngicos/clasificación , Genotipo , Interacciones Microbianas , Fenotipo , Virus ARN/clasificación , ARN Bicatenario/genética , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
4.
Mol Plant Pathol ; 18(5): 672-683, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27159273

RESUMEN

Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus-induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post-inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non-infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidad , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virología , Biomarcadores de Tumor/genética , Silenciador del Gen , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Nicotiana/genética , Proteína Tumoral Controlada Traslacionalmente 1
5.
Int J Mol Sci ; 14(2): 4030-49, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23429191

RESUMEN

The F-box domain is a protein structural motif of about 50 amino acids that mediates protein-protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin-proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin-proteasome system in virus-host interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...