Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 147: 104767, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37406840

RESUMEN

Interleukin-1ß (IL-1ß) is one of the first cytokines expressed during immune responses, and its levels are affected by many factors, including stress. To date, it has only been possible to measure IL-1ß transcript (mRNA) expression quantitatively in fish using qPCR. This is because previous studies that measured IL-1ß protein concentrations in these taxa used western blotting, which only provides qualitative data. To advance our knowledge of fish IL-1ß biology, and because post-translational processing plays a critical role in the activation of this molecule, we developed a quantitative enzyme-linked immunosorbent assay (ELISA) to accurately measure the concentration of IL-1ß protein in several cell cultures and in vivo in salmonids. We compared changes in IL-1ß protein levels to the expression of its mRNA. The developed ELISA was quite sensitive and has a detection limit of 12.5 pg/mL. The tools developed, and information generated through this research, will allow for a more accurate and complete understanding of IL-1ß's role in the immune response of salmonids.The assay described here has the potential to significantly advance our ability to assess fish health and immune status.


Asunto(s)
Salmonidae , Animales , Interleucina-1beta/metabolismo , Salmonidae/genética , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Appl Microbiol Biotechnol ; 107(13): 4323-4335, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37233755

RESUMEN

Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Animales , Spodoptera , Baculoviridae/genética , Células Sf9 , Proteínas Recombinantes/genética
3.
Vaccines (Basel) ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851104

RESUMEN

The manufacture and downstream processing of virus-like particles (VLPs) using the baculovirus expression vector system (BEVS) is complicated by the presence of large concentrations of baculovirus particles, which are similar in size and density to VLPs, and consequently are difficult to separate. To reduce the burden of downstream processing, CRISPR-Cas9 technology was used to introduce insertion-deletion (indel) mutations within the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp64 open reading frame, which encodes the major envelope protein of AcMNPV. After comfirming the site-specific targeting of gp64 leading to reduced budded virus (BV) release, the gag gene of human immunodeficiency virus type 1 was expressed to produce Gag VLPs. This approach was effective for producing VLPs using the BEVS whilst simultaneously obstructing BV release.

4.
Viruses ; 14(12)2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36560674

RESUMEN

The baculovirus expression vector system (BEVS) is a widely used platform for recombinant protein production for use in a wide variety of applications. Of particular interest is production of virus-like particles (VLPs), which consist of multiple viral proteins that self-assemble in strict stoichiometric ratios to mimic the structure of a virus but lacks its genetic material, while a significant amount of effort has been spent on optimizing expression ratios by co-infecting cells with multiple recombinant BEVs and modulating different process parameters, co-expressing multiple foreign genes from a single rBEV may offer more promise. However, there is currently a lack of promoters available with which to optimize co-expression of each foreign gene. To address this, previously published transcriptome data was used to identify promoters that have incrementally lower expression profiles and compared by expressing model cytoplasmic and secreted proteins. Bioinformatics was also used to identify sequence determinants that may be important for late gene transcription regulation, and translation initiation. The identified promoters and bioinformatics analyses may be useful for optimizing expression of foreign genes in the BEVS.


Asunto(s)
Baculoviridae , Regulación de la Expresión Génica , Baculoviridae/genética , Baculoviridae/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Expresión Génica , Vectores Genéticos/genética
5.
Bioresour Bioprocess ; 8(1): 122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970474

RESUMEN

Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~ 30 g L-1 glycerol, we achieved high PBG titers up to 209 mg L-1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40643-021-00482-3.

6.
Viruses ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696355

RESUMEN

The generation of knock-out viruses using recombineering of bacmids has greatly accelerated scrutiny of baculovirus genes for a variety of applications. However, the CRISPR-Cas9 system is a powerful tool that simplifies sequence-specific genome editing and effective transcriptional regulation of genes compared to traditional recombineering and RNAi approaches. Here, the effectiveness of the CRISPR-Cas9 system for gene disruption and transcriptional repression in the BEVS was compared. Cell lines constitutively expressing the cas9 or dcas9 gene were developed, and recombinant baculoviruses delivering the sgRNA were evaluated for disruption or repression of a reporter green fluorescent protein gene. Finally, endogenous AcMNPV genes were targeted for disruption or downregulation to affect gene expression and baculovirus replication. This study provides a proof-of-concept that CRISPR-Cas9 technology may be an effective tool for efficient scrutiny of baculovirus genes through targeted gene disruption and transcriptional repression.


Asunto(s)
Baculoviridae/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Regulación Viral de la Expresión Génica , Animales , Línea Celular , Humanos , Células Sf9
7.
Antimicrob Resist Infect Control ; 10(1): 133, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507617

RESUMEN

OBJECTIVES/PURPOSE: High-touch surfaces are a critical reservoir in the spread of nosocomial infections. Although disinfection and infection control protocols are well developed, they lack the ability to passively reduce the pathogenic load of high-touch surfaces. Copper and its alloys have been suggested as a surface that exhibit continuous biocidal effects. Antimicrobial studies on these surfaces are prevalent, while virucidal studies are not as well explored. The goal of this study was to first determine the virucidal activity of a copper-nickel-zinc alloy and to then examine the effect of soiling and virus preparation on virucidal activity. METHODS: A baculovirus vector was used as an easily quantifiable model of an infectious enveloped animal cell virus. Droplets containing virus were deposited on surfaces and allowed to stay wet using humidity control or were dried onto the surface. Virus was then recovered from the surface and assayed for infectivity. To examine how the composition of the droplet affected the survival of the virus, 3 different soiling conditions were tested. The first two were recommended by the United States Environmental Protection Agency and the third consisted of cell debris resulting from virus amplification. RESULTS: A copper-nickel-zinc alloy was shown to have strong virucidal effects for an enveloped virus. Copper, nickel, and zinc ions were all shown to leach from the alloy surface and are the likely cause of virucidal activity by this surface. Virucidal activity was achieved under moderate soiling but lost under high soiling generated by routine virus amplification procedures. The surface was able to repeatably inactivate dried virus droplets under moderate soiling conditions, but unable to do so for virus droplets kept wet using high humidity. CONCLUSION: Ion leaching was associated with virucidal activity in both wet and dried virus conditions. Soiling protected the virus by quenching metal ions, and not by inhibiting leaching. The composition of the solution containing virus plays a critical role in evaluating the virucidal activity of surfaces and surface coatings.


Asunto(s)
Antivirales/administración & dosificación , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Desinfección/métodos , Virosis/prevención & control , Aleaciones/farmacología , Aleaciones/uso terapéutico , Antivirales/farmacología , Cobre/farmacología , Cobre/uso terapéutico , Medios de Cultivo Condicionados , Desinfección/normas , Humanos , Técnicas de Dilución del Indicador , Níquel/farmacología , Níquel/uso terapéutico , Virosis/virología , Zinc/farmacología , Zinc/uso terapéutico
8.
Biotechnol Adv ; 37(4): 538-568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30339871

RESUMEN

While the widespread reliance on fossil fuels is driven by their low cost and relative abundance, this fossil-based economy has been deemed unsustainable and, therefore, the adoption of sustainable and environmentally compatible energy sources is on the horizon. Biorefinery is an emerging approach that integrates metabolic engineering, synthetic biology, and systems biology principles for the development of whole-cell catalytic platforms for biomanufacturing. Due to the high degree of reduction and low cost, glycerol, either refined or crude, has been recognized as an ideal feedstock for the production of value-added biologicals, though microbial dissimilation of glycerol sometimes can be difficult particularly under anaerobic conditions. While strain development for glycerol biorefinery is widely reported in the literature, few, if any, commercialized bioprocesses have been developed as a result, such that engineering of glycerol metabolism in microbial hosts remains an untapped opportunity in biomanufacturing. Here we review the recent progress made in engineering microbial hosts for the production of biofuels, diols, organic acids, biopolymers, and specialty chemicals from glycerol. We begin with a broad outline of the major pathways for fermentative and respiratory glycerol dissimilation and key end metabolites, and then focus our analysis on four key genera of bacteria known to naturally dissimilate glycerol, i.e. Klebsiella, Citrobacter, Clostridium, and Lactobacillus, in addition to Escherichia coli, and systematically review the progress made toward engineering these microorganisms for glycerol biorefinery. We also identify the major biotechnological and bioprocessing advantages and disadvantages of each genus, and bottlenecks limiting the production of target metabolites from glycerol in engineered strains. Our analysis culminates in the development of potential strategies to overcome the current technical limitations identified for commonly employed strains, with an outlook on the suitability of different hosts for the production of key metabolites and avenues for their future development into biomanufacturing platforms.


Asunto(s)
Biocombustibles , Biotecnología/tendencias , Glicerol/química , Ingeniería Metabólica/tendencias , Escherichia coli/química , Escherichia coli/genética , Fermentación , Biología Sintética
9.
Crit Rev Biotechnol ; 37(6): 701-722, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27557613

RESUMEN

Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].


Asunto(s)
Acilcoenzima A/metabolismo , Biocombustibles , Productos Biológicos , Ingeniería Metabólica
10.
Appl Environ Microbiol ; 82(20): 6109-6119, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27496775

RESUMEN

The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genus Clostridium has lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied the Streptococcus pyogenes type II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing in Clostridium acetobutylicum DSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression in C. acetobutylicum Subsequently, we targeted the carbon catabolite repression (CCR) system of C. acetobutylicum through transcriptional repression of the hprK gene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated in Clostridium pasteurianum ATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes. IMPORTANCE: After recognizing the industrial potential of Clostridium for decades, methods for the genetic manipulation of these anaerobic bacteria are still underdeveloped. This study reports the implementation of CRISPR-Cas technology for genome editing and transcriptional regulation in Clostridium acetobutylicum, which is arguably the most common industrial clostridial strain. The developed genetic tools enable simpler, more reliable, and more extensive derivation of C. acetobutylicum mutant strains for industrial purposes. Similar approaches were also demonstrated in Clostridium pasteurianum, another clostridial strain that is capable of utilizing glycerol as the carbon source for butanol fermentation, and therefore can be arguably applied in other clostridial strains.


Asunto(s)
Sistemas CRISPR-Cas , Clostridium acetobutylicum/genética , Ingeniería Genética/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Genoma Bacteriano , Transcripción Genética
11.
Appl Environ Microbiol ; 82(17): 5375-88, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342556

RESUMEN

UNLABELLED: Crude glycerol, the major by-product of biodiesel production, is an attractive bioprocessing feedstock owing to its abundance, low cost, and high degree of reduction. In line with the advent of the biodiesel industry, Clostridium pasteurianum has gained prominence as a result of its unique capacity to convert waste glycerol into n-butanol, a high-energy biofuel. However, no efforts have been directed at abolishing the production of 1,3-propanediol (1,3-PDO), the chief competing product of C. pasteurianum glycerol fermentation. Here, we report rational metabolic engineering of C. pasteurianum for enhanced n-butanol production through inactivation of the gene encoding 1,3-PDO dehydrogenase (dhaT). In spite of current models of anaerobic glycerol dissimilation, culture growth and glycerol utilization were unaffected in the dhaT disruption mutant (dhaT::Ll.LtrB). Metabolite characterization of the dhaT::Ll.LtrB mutant revealed an 83% decrease in 1,3-PDO production, encompassing the lowest C. pasteurianum 1,3-PDO titer reported to date (0.58 g liter(-1)). With 1,3-PDO formation nearly abolished, glycerol was converted almost exclusively to n-butanol (8.6 g liter(-1)), yielding a high n-butanol selectivity of 0.83 g n-butanol g(-1) of solvents compared to 0.51 g n-butanol g(-1) of solvents for the wild-type strain. Unexpectedly, high-performance liquid chromatography (HPLC) analysis of dhaT::Ll.LtrB mutant culture supernatants identified a metabolite peak consistent with 1,2-propanediol (1,2-PDO), which was confirmed by nuclear magnetic resonance (NMR). Based on these findings, we propose a new model for glycerol dissimilation by C. pasteurianum, whereby the production of 1,3-PDO by the wild-type strain and low levels of both 1,3-PDO and 1,2-PDO by the engineered mutant balance the reducing equivalents generated during cell mass synthesis from glycerol. IMPORTANCE: Organisms from the genus Clostridium are perhaps the most notable native cellular factories, owing to their vast substrate utilization range and equally diverse variety of metabolites produced. The ability of C. pasteurianum to sustain redox balance and glycerol fermentation despite inactivation of the 1,3-PDO pathway is a testament to the exceptional metabolic flexibility exhibited by clostridia. Moreover, identification of a previously unknown 1,2-PDO-formation pathway, as detailed herein, provides a deeper understanding of fermentative glycerol utilization in clostridia and will inform future metabolic engineering endeavors involving C. pasteurianum To our knowledge, the C. pasteurianum dhaT disruption mutant derived in this study is the only organism that produces both 1,2- and 1,3-PDOs. Most importantly, the engineered strain provides an excellent platform for highly selective production of n-butanol from waste glycerol.


Asunto(s)
Clostridium/metabolismo , Propilenglicol/metabolismo , Glicoles de Propileno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Butanoles/metabolismo , Clostridium/genética , Fermentación , Glicerol/metabolismo
12.
Sci Rep ; 6: 25666, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27157668

RESUMEN

Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium/genética , Edición Génica , Secuencia de Bases , Simulación por Computador , Sitios Genéticos , Marcadores Genéticos , Motivos de Nucleótidos/genética
13.
Appl Environ Microbiol ; 82(9): 2574-2584, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26896132

RESUMEN

To expand the chemical and molecular diversity of biotransformation using whole-cell biocatalysts, we genetically engineered a pathway in Escherichia coli for heterologous production of butanone, an important commodity ketone. First, a 1-propanol-producing E. coli host strain with its sleeping beauty mutase (Sbm) operon being activated was used to increase the pool of propionyl-coenzyme A (propionyl-CoA). Subsequently, molecular heterofusion of propionyl-CoA and acetyl-CoA was conducted to yield 3-ketovaleryl-CoA via a CoA-dependent elongation pathway. Lastly, 3-ketovaleryl-CoA was channeled into the clostridial acetone formation pathway for thioester hydrolysis and subsequent decarboxylation to form butanone. Biochemical, genetic, and metabolic factors affecting relative levels of ketogenesis, acidogenesis, and alcohol genesis under selected fermentative culture conditions were investigated. Using the engineered E. coli strain for batch cultivation with 30 g liter(-1)glycerol as the carbon source, we achieved coproduction of 1.3 g liter(-1)butanone and 2.9 g liter(-1)acetone. The results suggest that approximately 42% of spent glycerol was utilized for ketone biosynthesis, and thus they demonstrate potential industrial applicability of this microbial platform.


Asunto(s)
Butanonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas Bacteriológicas/métodos , Reactores Biológicos , Vías Biosintéticas , Fermentación , Ingeniería Genética/métodos , Ingeniería Metabólica/métodos , Operón
14.
Appl Microbiol Biotechnol ; 99(18): 7579-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25981995

RESUMEN

The industrial Gram-positive anaerobe Clostridium acetobutylicum is a valued acetone, butanol, and ethanol (ABE) solvent producer that is able to utilize a vast array of carbon sources in fermentation. When glucose is present in the growth medium, however, C. acetobutylicum, like many Gram-positive organisms, exhibits biphasic growth characteristics in which glucose is used preferentially over secondary carbon sources, a phenomenon known as carbon catabolite repression (CCR). The secondary carbon source is only utilized when the supply of glucose is exhausted, resulting in inefficient use of complex carbon sources. As biofuel production is sought from cheap feedstock, attention has turned to lignocellulosic biomass. Growth of C. acetobutylicum on lignocellulose, however, can be limited by CCR. Here, we present a method to relieve the inhibitory effect of CCR and allow simultaneous utilization of the lignocellulosic sugars of glucose and xylose by C. acetobutylicum. First, we utilized an in vivo gene reporter assay to demonstrate that an identified 14-nucleotide catabolite responsive element (CRE) sequence was sufficient to introduce CCR-mediated transcriptional inhibition, while subsequent mutation of the CRE sequence relieved the inhibitory effect. Next, we demonstrated that C. acetobutylicum harboring a CRE-less plasmid-borne xylose and pentose phosphate pathway operon afforded a 7.5-fold increase in xylose utilization in the presence of glucose as compared to a wild-type CRE plasmid-borne operon, effectively overcoming native CCR effects. The methodology presented here should translate to other members of Clostridium that exhibit CCR to enable simultaneous utilization of a vast array of carbon sources.


Asunto(s)
Represión Catabólica , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Redes y Vías Metabólicas/genética , Xilosa/metabolismo , Mutación , Elementos de Respuesta
15.
Biotechnol Adv ; 32(3): 623-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24768687

RESUMEN

In recent years, the genus Clostridium has risen to the forefront of both medical biotechnology and industrial biotechnology owing to its potential in applications as diverse as anticancer therapy and production of commodity chemicals and biofuels. The prevalence of hyper-virulent strains of C. difficile within medical institutions has also led to a global epidemic that demands a more thorough understanding of clostridial genetics, physiology, and pathogenicity. Unfortunately, Clostridium suffers from a lack of sophisticated genetic tools and techniques which has hindered the biotechnological exploitation of this important bacterial genus. This review provides a comprehensive summary of biotechnological progress made in clostridial genetic tool development, while also aiming to serve as a technical guide for the advancement of underdeveloped clostridial strains, including recalcitrant species, novel environmental samples, and non-type strains. Relevant strain engineering techniques, from genome sequencing and establishment of a gene transfer methodology through to deployment of advanced genome editing procedures, are discussed in detail to provide a blueprint for future clostridial strain construction endeavors. It is expected that a more thorough and rounded-out genetic toolkit available for use in the clostridia will bring about the construction of superior bioprocessing strains and a more complete understanding of clostridial genetics, physiology, and pathogenicity.


Asunto(s)
Clostridium , Genoma Bacteriano/genética , Biocombustibles , Clostridium/genética , Clostridium/fisiología , Ingeniería Genética , Microbiología Industrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...