Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 5(1): eaav0486, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30662951

RESUMEN

River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.


Asunto(s)
Ciclo del Carbono/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Ríos/microbiología , Temperatura , Actividades Humanas , Humanos
2.
Limnol Oceanogr ; 62(Suppl 1): S239-S257, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29263559

RESUMEN

Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of south Texas. We measured N export from both rivers to the estuary over 2 yr that encompass a severe drought, along with detailed mechanisms of N cycling in river, tidal river, and two estuary sites during prolonged drought. WWTP nutrient inputs stimulated uptake of N, but denitrification resulting in permanent N removal accounted for only a small proportion of total uptake. During drought periods, WWTP N was the primary source of exported N to the estuary, minimizing the influence of episodic storm-derived nutrients from the WWTP-influenced river to the estuary. In the site without WWTP influence, the river exported very little N during drought, so storm-derived nutrient pulses were important for delivering N loads to the estuary. Overall, N is processed from river to estuary, but sustained WWTP-N loads and periodic floods alter the timing of N delivery and N processing. Research that incorporates empirical measurements of N fluxes from river to estuary can inform management needs in the face of multiple anthropogenic stressors such as demand for freshwater and eutrophication.

3.
Environ Sci Technol ; 51(14): 7785-7793, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28648051

RESUMEN

Cyanobacterial harmful algal blooms (CyanoHABs) are enhanced by anthropogenic pressures, including excessive nutrient (nitrogen, N, and phosphorus, P) inputs and a warming climate. Severe eutrophication in aquatic systems is often manifested as non-N2-fixing CyanoHABs (e.g., Microcystis spp.), but the biogeochemical relationship between N inputs/dynamics and CyanoHABs needs definition. Community biological ammonium (NH4+) demand (CBAD) relates N dynamics to total microbial productivity and NH4+ deprivation in aquatic systems. A mechanistic conceptual model was constructed by combining nutrient cycling and CBAD observations from a spectrum of lakes to assess N cycling interactions with CyanoHABs. Model predictions were supported with CBAD data from a Microcystis bloom in Maumee Bay, Lake Erie, during summer 2015. Nitrogen compounds are transformed to reduced, more bioavailable forms (e.g., NH4+ and urea) favored by CyanoHABs. During blooms, algal biomass increases faster than internal NH4+ regeneration rates, causing high CBAD values. High turnover rates from cell death and remineralization of labile organic matter consume oxygen and enhance denitrification. These processes drive eutrophic systems to NH4+ limitation or colimitation under warm, shallow conditions and support the need for dual nutrient (N and P) control.


Asunto(s)
Compuestos de Amonio , Cianobacterias , Eutrofización , Lagos , Nitrógeno , Fósforo
4.
PLoS One ; 6(10): e27065, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046446

RESUMEN

The suspension feeding bivalve Austrovenus stutchburyi is a key species on intertidal sandflats in New Zealand, affecting the appearance and functioning of these systems, but is susceptible to several environmental stressors including sedimentation. Previous studies into the effect of this species on ecosystem function have been restricted in space and time, limiting our ability to infer the effect of habitat change on functioning. We examined the effect of Austrovenus on benthic primary production and nutrient dynamics at two sites, one sandy, the other composed of muddy-sand to determine whether sedimentary environment alters this key species' role. At each site we established large (16 m(2)) plots of two types, Austrovenus addition and removal. In winter and summer we deployed light and dark benthic chambers to quantify oxygen and nutrient fluxes and measured sediment denitrification enzyme activity to assess denitrification potential. Rates of gross primary production (GPP) and ammonium uptake were significantly increased when Austrovenus was added, relative to removed, at the sandy site (GPP, 1.5 times greater in winter and summer; ammonium uptake, 8 times greater in summer; 3-factor analysis of variance (ANOVA), p<0.05). Denitrification potential was also elevated in Austrovenus addition plots at the sandy site in summer (by 1.6 times, p<0.1). In contrast, there was no effect of Austrovenus treatment on any of these variables at the muddy-sand site, and overall rates tended to be lower at the muddy-sand site, relative to the sandy site (e.g. GPP was 2.1 to 3.4 times lower in winter and summer, respectively, p<0.001). Our results suggest that the positive effects of Austrovenus on system productivity and denitrification potential is limited at a muddy-sand site compared to a sandy site, and reveal the importance of considering sedimentary environment when examining the effect of key species on ecosystem function.


Asunto(s)
Bivalvos/fisiología , Ecosistema , Conducta Alimentaria , Sedimentos Geológicos , Animales , Alimentos , Nueva Zelanda , Estaciones del Año , Agua de Mar
5.
Water Res ; 45(17): 5463-75, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21880343

RESUMEN

Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate (NO(3)(-)) from point source discharges into non-reactive dinitrogen (N(2)) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO(3)(-) removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m(3)) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO(3)(-) enriched water (14.38 mg N L(-1) and 17.15 mg N L(-1)). After 2.5 years of incubation measurements were made of NO(3)(-)-N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO(3)(-), nitrite and ammonia), copy number of nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes, and greenhouse gas production (dissolved nitrous oxide (N(2)O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO(3)(-)-N removal. Nitrate-N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m(-3) d(-1) (maize cobs), and were predominantly limited by C availability and temperature (Q(10) = 1.2) when NO(3)(-)-N outlet concentrations remained above 1 mg L(-1). The NO(3)(-)-N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N(2)O emission in warmer environments. Maize cob substrate had the highest NO(3)(-)-N removal rate, but adverse effects include TOC release, dissolved N(2)O release and substantial carbon consumption by non-denitrifiers. Woodchips removed less than half of NO(3)(-) removed by maize cobs, but provided ideal conditions for denitrifying bacteria, and adverse effects were not observed. Therefore we recommend the combination of maize cobs and woodchips to enhance NO(3)(-) removal while minimizing adverse effects in denitrification beds.


Asunto(s)
Bacterias/crecimiento & desarrollo , Carbono/farmacología , Desnitrificación/efectos de los fármacos , Nitratos/aislamiento & purificación , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Bacterias/efectos de los fármacos , Bacterias/genética , Desnitrificación/genética , Dosificación de Gen/genética , Genes Bacterianos/genética , Efecto Invernadero , Metano/análisis , Nitrato-Reductasa/genética , Nitrógeno/aislamiento & purificación , Óxido Nitroso/análisis , Oxidorreductasas/genética , ARN Ribosómico 16S/genética , Solubilidad/efectos de los fármacos , Temperatura
6.
Water Res ; 45(14): 4141-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696799

RESUMEN

Denitrifying woodchip bioreactors (denitrification beds) are increasingly used to remove excess nitrate (NO3⁻) from point-sources such as wastewater effluent or subsurface drains from agricultural fields. NO3⁻ removal in these beds is assumed to be due to microbial denitrification but direct measurements of denitrification are lacking. Our objective was to test four different approaches for measuring denitrification rates in a denitrification bed that treated effluent discharged from a glasshouse. We compared these denitrification rates with the rate of NO3⁻ removal along the length of the bed. The NO3⁻ removal rate was 8.73 ± 1.45 g m⁻³ d⁻¹. In vitro acetylene inhibition assays resulted in highly variable denitrification rates (DR(AI)) along the length of the bed and generally 5 times greater than the measured (NO3⁻-N removal rate. An in situ push-pull test, where enriched ¹5N-NO3⁻ was injected into 2 locations along the bed, resulted in rates of 23.2 ± 1.43 g N m⁻³ d⁻¹ and 8.06 ± 1.64 g N m⁻³ d⁻¹. The denitrification rate calculated from the increase in dissolved N2 and N2O concentrations (DR(N2) along the length of the denitrification bed was 6.7 ± 1.61 g N m⁻³ d⁻¹. Lastly, denitrification rates calculated from changes in natural abundance measurements of δ¹5N-N2 and δ¹5N-NO3⁻ along the length of the bed yielded a denitrification rate (DR(NA)) of 6.39 ± 2.07 g m⁻³ d⁻¹. Based on our experience, DR(N2) measurements were the easiest and most efficient approach for determining the denitrification rate and N2O production of a denitrification bed. However, the other approaches were useful for testing other hypotheses such as factors limiting denitrification or may be applied to determine denitrification rates in environmental systems different to our study site. DR(N2) does require very careful sampling to avoid atmospheric N2 contamination but could be used to rapidly determine denitrification rates in a variety of aquatic systems with high N2 production and even water flows. These measurements demonstrated that the majority of NO3⁻ removal was due to heterotrophic denitrification.


Asunto(s)
Reactores Biológicos , Nitratos/análisis , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Desnitrificación , Nueva Zelanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...