Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 18, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168085

RESUMEN

The Baltic Sea is one of the largest brackish water environments on earth and is characterised by pronounced physicochemical gradients and seasonal dynamics. Although the Baltic Sea has a long history of microscopy-based plankton monitoring, DNA-based metabarcoding has so far mainly been limited to individual transect cruises or time-series of single stations. Here we report a dataset covering spatiotemporal variation in prokaryotic and eukaryotic microbial communities and physicochemical parameters. Within 13-months between January 2019 and February 2020, 341 water samples were collected at 22 stations during monthly cruises along the salinity gradient. Both salinity and seasonality are strongly reflected in the data. Since the dataset was generated with both metabarcoding and microscopy-based methods, it provides unique opportunities for both technical and ecological analyses, and is a valuable biodiversity reference for future studies, in the prospect of climate change.


Asunto(s)
Microbiota , Plancton , Países Bálticos , Biodiversidad , Agua de Mar
2.
Environ Res ; 232: 116419, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321339

RESUMEN

Bacteria are major utilizers of dissolved organic matter in aquatic systems. In coastal areas bacteria are supplied with a mixture of food sources, spanning from refractory terrestrial dissolved organic matter to labile marine autochthonous organic matter. Climate scenarios indicate that in northern coastal areas, the inflow of terrestrial organic matter will increase, and autochthonous production will decrease, thus bacteria will experience a change in the food source composition. How bacteria will cope with such changes is not known. Here, we tested the ability of an isolated bacterium from the northern Baltic Sea coast, Pseudomonas sp., to adapt to varying substrates. We performed a 7-months chemostat experiment, where three different substrates were provided: glucose, representing labile autochthonous organic carbon, sodium benzoate representing refractory organic matter, and acetate - a labile but low energy food source. Growth rate has been pointed out as a key factor for fast adaptation, and since protozoan grazers speed-up the growth rate we added a ciliate to half of the incubations. The results show that the isolated Pseudomonas is adapted to utilize both labile and ring-structured refractive substrates. The growth rate was the highest on the benzoate substrate, and the production increased over time indicating that adaptation did occur. Further, our findings indicate that predation can cause Pseudomonas to change their phenotype to resist and promote survival in various carbon substrates. Genome sequencing reveals different mutations in the genome of adapted populations compared to the native populations, suggesting the adaptation of Pseudomonas sp. to changing environment.


Asunto(s)
Carbono , Materia Orgánica Disuelta , Pseudomonas , Bacterias , Aclimatación
3.
Ecol Evol ; 13(6): e10158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37274152

RESUMEN

Algae-produced long-chain polyunsaturated fatty acids (LC-PUFA; with ≥20 carbon atoms) are key biomolecules for consumer production and animal health. They are transferred to higher trophic levels and accumulated in food chains. However, LC-PUFA accumulation in consumers and their trophic transfer vary with the diet quality and the physiological demand for LC-PUFA of consumers. The goal of this study was to investigate spatial and taxonomic differences in LC-PUFA retention of coastal fish predators that potentially differ in their habitat use (benthic versus pelagic) and prey quality. We analyzed the fatty acid (FA) composition of common fish species, namely roach and European perch, as well as their potential prey from benthic and pelagic habitats in three bays of the northern Baltic Sea. We then assessed whether the fish LC-PUFA retention differed between species and among the study bays with different diet quality, that is, LC-PUFA availability. Our data indicated taxon-specific differences in the retention of LC-PUFA and their precursor FA in fish (i.e., short-chain PUFA with <20 carbon atoms). Perch did not show any spatial variation in the retention of all these FA, while roach showed spatial differences in the retention of docosahexaenoic acid (DHA) and their precursor FA, but not eicosapentaenoic acid (EPA). Data suggest that diet quality and trophic reliance on benthic prey underlay the DHA retention differences in roach. Although the PUFA supply might differ among sites, the low spatial variation in LC-PUFA content of perch and roach indicates that both fishes were able to selectively retain dietary LC-PUFA. Climate change together with other existing human-caused environmental stressors are expected to alter the algal assemblages and lower their LC-PUFA supply for aquatic food webs. Our findings imply that these stressors will pose heterogeneous impacts on different fish predators. We advocate further investigations on how environmental changes would affect the nutritional quality of the basal trophic level, and their subsequent impacts on LC-PUFA retention, trophic ecology, and performance of individual fish species.

4.
Environ Sci Ecotechnol ; 13: 100209, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437890

RESUMEN

Halomethoxybenzenes (HMBs) are a group of compounds with natural and anthropogenic origins. Here we extend a 2002-2015 survey of bromoanisoles (BAs) in the air and precipitation at Råö on the Swedish west coast and Pallas in Subarctic Finland. New BAs data are reported for 2018 and 2019 and chlorinated HMBs are included for these and some previous years: drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), and pentachloroanisole (PeCA). The order of abundance of HMBs at Råö was ΣBAs > DAME > TeCV > PeCA, whereas at Pallas the order of abundance was DAME > ΣBAs > TeCA > PeCA. The lower abundance of BAs at Pallas reflects its inland location, away from direct marine influence. Clausius-Clapeyron (CC) plots of log partial pressure (Pair)/Pa versus 1/T suggested distant transport at both sites for PeCA and local exchange for DAME and TeCV. BAs were dominated by distant transport at Pallas and by both local and distant sources at Råö. Relationships between air and precipitation concentrations were examined by scavenging ratios, SR = (ng m-3)precip/(ng m-3)air. SRs were higher at Pallas than Råö due to greater Henry's law partitioning of gaseous compounds into precipitation at colder temperatures. DAME is produced by terrestrial fungi. We screened 19 fungal species from Swedish forests and found seven of them contained 0.01-3.8 mg DAME per kg fresh weight. We suggest that the volatilization of DAME from fungi and forest litter containing fungal mycelia may contribute to atmospheric levels at both sites.

5.
Front Microbiol ; 13: 809166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966696

RESUMEN

Methylmercury (MeHg) is a potent neurotoxin commonly found in aquatic environments and primarily formed by microbial methylation of inorganic divalent mercury (Hg(II)) under anoxic conditions. Recent evidence, however, points to the production of MeHg also in oxic pelagic waters, but the magnitude and the drivers for this process remain unclear. Here, we performed a controlled experiment testing the hypothesis that inputs of terrestrial dissolved organic matter (tDOM) to coastal waters enhance MeHg formation via increased bacterial activity. Natural brackish seawater from a coastal area of the Baltic Sea was exposed to environmentally relevant levels of Hg(II) and additions of tDOM according to climate change scenarios. MeHg formation was observed to be coupled to elevated bacterial production rates, which, in turn, was linked to input levels of tDOM. The increased MeHg formation was, however, not coupled to any specific change in bacterial taxonomic composition nor to an increased abundance of known Hg(II) methylation genes. Instead, we found that the abundance of genes for the overall bacterial carbon metabolism was higher under increased tDOM additions. The findings of this study may have important ecological implications in a changing global climate by pointing to the risk of increased exposure of MeHg to pelagic biota.

6.
Data Brief ; 42: 108158, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35496486

RESUMEN

We analyzed the taxonomic and fatty-acid (FA) compositions of phytoplankton and zooplankton, and the environmental conditions at three coastal and offshore stations of the northern Baltic Sea. Plankton samples for FA analyses were collected under the framework of sampling campaigns of the Swedish National Marine Monitoring program in September 2017. Monitoring data of phytoplankton and zooplankton biomass, and environmental variables at each station were extracted from the Swedish Meteorological and Hydrological Institute database (https://sharkweb.smhi.se/). Monthly phytoplankton biomass at each station in July-September 2017 was aggregated by class (i.e., chyrsophytes, cryptophytes, dinoflagellates, diatoms, euglenophytes, cyanobacteria, etc.). Zooplankton biomass in September 2017 was aggregated by major taxa (i.e., Acartia sp. [Calanoida], Eurytemora affinis [Calanoida], Cladocera, Limnocalanus macrurus and other copepods (i.e. excluding Eurytemora and Acartia)). Environmental variables monthly monitored in January-October 2017 included salinity, concentrations of dissolved organic carbon, humic substances, total nitrogen and total phosphorus. These variables were measured from 0 to 10 m depth below water surface, and the depth-integrated averages were used for data analyses. Seston and zooplankton (Eurytemora affinis, Acartia sp. and Cladocera) FA compositions were analyzed using gas chromatography and mass spectroscopy (GC-MS). Our dataset could provide new insights into how taxonomic composition and biochemical quality of the planktonic food chains change with the environmental conditions in subarctic marine ecosystems.

7.
Mol Ecol Resour ; 22(6): 2304-2318, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35437888

RESUMEN

High-throughput sequencing-based analysis of microbial diversity has evolved vastly over the last decade. Currently, the go-to method for studying microbial eukaryotes is short-read metabarcoding of variable regions of the 18S rRNA gene with <500 bp amplicons. However, there is a growing interest in applying long-read sequencing of amplicons covering the rRNA operon for improving taxonomic resolution. For both methods, the choice of primers is crucial. It determines if community members are covered, if they can be identified at a satisfactory taxonomic level, and if the obtained community profile is representative. Here, we designed new primers targeting 18S and 28S rRNA based on 177,934 and 21,072 database sequences, respectively. The primers were evaluated in silico along with published primers on reference sequence databases and marine metagenomics data sets. We further evaluated a subset of the primers for short- and long-read sequencing on environmental samples in vitro and compared the obtained community profile with primer-unbiased metagenomic sequencing. Of the short-read pairs, a new V6-V8 pair and the V4_Balzano pair used with a simplified PCR protocol provided good results in silico and in vitro. Fewer differences were observed between the long-read primer pairs. The long-read amplicons and ITS1 alone provided higher taxonomic resolution than V4. Together, our results represent a reference and guide for selection of robust primers for research on and environmental monitoring of microbial eukaryotes.


Asunto(s)
Eucariontes , Operón de ARNr , Cartilla de ADN/genética , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Operón de ARNr/genética
8.
Front Microbiol ; 12: 726844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250896

RESUMEN

Global warming scenarios indicate that in subarctic regions, the precipitation will increase in the future. Coastal bacteria will thus receive increasing organic carbon sources from land runoff. How such changes will affect the function and taxonomic composition of coastal bacteria is poorly known. We performed a 10-day experiment with two isolated bacteria: Shewanella baltica from a seaside location and Duganella sp. from a river mouth, and provided them with a plankton and a river extract as food substrate. The bacterial growth and carbon consumption were monitored over the experimental period. Shewanella and Duganella consumed 40% and 30% of the plankton extract, respectively, while the consumption of the river extract was low for both bacteria, ∼1%. Shewanella showed the highest bacterial growth efficiency (BGE) (12%) when grown on plankton extract, while when grown on river extract, the BGE was only 1%. Duganella showed low BGE when grown on plankton extract (< 1%) and slightly higher BGE when grown on river extract (2%). The cell growth yield of Duganella was higher than that of Shewanella when grown on river extract. These results indicate that Duganella is more adapted to terrestrial organic substrates with low nutritional availability, while Shewanella is adapted to eutrophied conditions. The different growth performance of the bacteria could be traced to genomic variations. A closely related genome of Shewanella was shown to harbor genes for the sequestration of autochthonously produced carbon substrates, while Duganella contained genes for the degradation of relatively refractive terrestrial organic matter. The results may reflect the influence of environmental drivers on bacterial community composition in natural aquatic environments. Elevated inflows of terrestrial organic matter to coastal areas in subarctic regions would lead to increased occurrence of bacteria adapted to the degradation of complex terrestrial compounds with a low bioavailability.

9.
Environ Sci Process Impacts ; 21(5): 881-892, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31032511

RESUMEN

Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.


Asunto(s)
Anisoles/análisis , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/análisis , Algas Marinas/química , Contaminantes Químicos del Agua/análisis , Animales , Cromatografía de Gases y Espectrometría de Masas , Halogenación , Humanos , Noruega , Océanos y Mares , Suecia
10.
Mar Environ Res ; 129: 236-244, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28645656

RESUMEN

Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.


Asunto(s)
Carbono/metabolismo , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Bacterias , Biomasa , Cambio Climático , Eutrofización , Fitoplancton/metabolismo , Ríos
11.
Environ Monit Assess ; 189(7): 354, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28647904

RESUMEN

Ongoing marine monitoring programs are seldom designed to detect changes in the environment between different years, mainly due to the high number of samples required for a sufficient statistical precision. We here show that pooling over time (time integration) of seasonal measurements provides an efficient method of reducing variability, thereby improving the precision and power in detecting inter-annual differences. Such data from weekly environmental sensor profiles at 21 stations in the northern Bothnian Sea was used in a cost-precision spatio-temporal allocation model. Time-integrated averages for six different variables over 6 months from a rather heterogeneous area showed low variability between stations (coefficient of variation, CV, range of 0.6-12.4%) compared to variability between stations in a single day (CV range 2.4-88.6%), or variability over time for a single station (CV range 0.4-110.7%). Reduced sampling frequency from weekly to approximately monthly sampling did not change the results markedly, whereas lower frequency differed more from results with weekly sampling. With monthly sampling, high precision and power of estimates could therefore be achieved with a low number of stations. With input of cost factors like ship time, labor, and analyses, the model can predict the cost for a given required precision in the time-integrated average of each variable by optimizing sampling allocation. A following power analysis can provide information on minimum sample size to detect differences between years with a required power. Alternatively, the model can predict the precision of annual means for the included variables when the program has a pre-defined budget. Use of time-integrated results from sampling stations with different areal coverage and environmental heterogeneity can thus be an efficient strategy to detect environmental differences between single years, as well as a long-term temporal trend. Use of the presented allocation model will then help to minimize the cost and effort of a monitoring program.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Económicos , Modelos Teóricos , Ambiente , Monitoreo del Ambiente/economía , Mar del Norte
12.
Ambio ; 45(6): 635-48, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27075572

RESUMEN

In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Microalgas/crecimiento & desarrollo , Agua de Mar , Países Bálticos , Ecosistema , Océanos y Mares , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...