Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Biol ; 19(4)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35580580

RESUMEN

On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAWs) have become a widely used technique to create well-defined networks of living cellsin vitroduring the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 h. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm (32 mW), our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3% after 30 h of SSAW treatment.


Asunto(s)
Neuroblastoma , Acústica , Humanos , Neuritas/fisiología , Proyección Neuronal , Neuronas
2.
PLoS One ; 17(3): e0264571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231060

RESUMEN

Invasion is strongly influenced by the mechanical properties of the extracellular matrix. Here, we use microfluidics to align fibers of a collagen matrix and study the influence of fiber orientation on invasion from a cancer cell spheroid. The microfluidic setup allows for highly oriented collagen fibers of tangential and radial orientation with respect to the spheroid, which can be described by finite element simulations. In invasion experiments, we observe a strong bias of invasion towards radial as compared to tangential fiber orientation. Simulations of the invasive behavior with a Brownian diffusion model suggest complete blockage of migration perpendicularly to fibers allowing for migration exclusively along fibers. This slows invasion toward areas with tangentially oriented fibers down, but does not prevent it.


Asunto(s)
Microfluídica , Neoplasias , Línea Celular Tumoral , Colágeno , Simulación por Computador , Matriz Extracelular , Microfluídica/métodos , Esferoides Celulares
3.
Biomicrofluidics ; 16(2): 024102, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35282034

RESUMEN

Single cell measurements with living specimen like, for example, the ciliated protozoan Paramecium caudatum can be a challenging task. We present here a microfluidic trapping mechanism for measurements with these micro-organisms that can be used, e.g., for optical measurements to correlate cellular functions with the phase state of the lipid membrane. Here, we reversibly trap single cells in small compartments. Furthermore, we track and analyze the swimming behavior of single cells over several minutes. Before and after reversible trapping the swimming speed is comparable, suggesting that trapping does not have a large effect on cell behavior. Last, we demonstrate the feasibility of membrane order measurements on living cells using the fluorescent dye 6-lauryl-2-dimethylaminonaphthalene (Laurdan).

4.
Proc Natl Acad Sci U S A ; 117(50): 31603-31613, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257581

RESUMEN

We report on in vitro wound-healing and cell-growth studies under the influence of radio-frequency (rf) cell stimuli. These stimuli are supplied either by piezoactive surface acoustic waves (SAWs) or by microelectrode-generated electric fields, both at frequencies around 100 MHz. Employing live-cell imaging, we studied the time- and power-dependent healing of artificial wounds on a piezoelectric chip for different cell lines. If the cell stimulation is mediated by piezomechanical SAWs, we observe a pronounced, significant maximum of the cell-growth rate at a specific SAW amplitude, resulting in an increase of the wound-healing speed of up to 135 ± 85% as compared to an internal reference. In contrast, cells being stimulated only by electrical fields of the same magnitude as the ones exposed to SAWs exhibit no significant effect. In this study, we investigate this effect for different wavelengths, amplitude modulation of the applied electrical rf signal, and different wave modes. Furthermore, to obtain insight into the biological response to the stimulus, we also determined both the cell-proliferation rate and the cellular stress levels. While the proliferation rate is significantly increased for a wide power range, cell stress remains low and within the normal range. Our findings demonstrate that SAW-based vibrational cell stimulation bears the potential for an alternative method to conventional ultrasound treatment, overcoming some of its limitations.


Asunto(s)
Estimulación Acústica/métodos , Sonido/efectos adversos , Vibración/uso terapéutico , Cicatrización de Heridas/efectos de la radiación , Estimulación Acústica/efectos adversos , Estimulación Acústica/instrumentación , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Terapia Combinada/efectos adversos , Terapia Combinada/instrumentación , Terapia Combinada/métodos , Perros , Electrodos , Humanos , Células de Riñón Canino Madin Darby , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno
5.
Biosens Bioelectron ; 173: 112807, 2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33221509

RESUMEN

A Love-wave based biosensor is introduced for analyzing a standardized wound healing assay by observing cell growth and quantifying cell detachment processes. Utilizing the piezoelectric material LiTaO3 36° XY-cut with a thin SiO2-cover layer, shear horizontal surface acoustic waves (SAW) are excited and detected by a set of Interdigital Transducers. Epithelial cells, being cultivated on the substrate and invading the sensors delay line cause a phase shift in the transmitted SAW signal. This phase shift correlates exactly with the surface coverage of the invading cells. After wound healing, emerging fluctuations in the phase shift signal provide information about the cell growth in a confluent cell layer. Additionally, the signal slope allows to quantify the cell detachment process induced by apoptosis, necrosis or cell lysis substances, respectively. Furthermore, culture conditions like temperature or osmolality can be simultaneously monitored by SAW. Based on a theoretical approach and using FEM simulations, we identified the acoustoelectric interaction as the main reason for the phase shift in various frequency- and time-dependent studies. Our model is validated by experimental data and allows predicting the phase change caused by variations in the cell-substrate distance or the volume ratio of the nucleus and the complete cell.

6.
Phys Rev E ; 98(1-1): 012411, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30110731

RESUMEN

For the investigation of cell-cell interaction in general and for neural communication and future applications of neural networks, a controllable and well-defined network structure is crucial. We here propose the implementation of an acoustically driven system for tunable and deliberate stimulation and manipulation of cell growth on a chip. This piezoelectric chip allows us to generate a checkerboard-like standing surface acoustic wave pattern coupled to a fluid layer in a microfluidic chamber on top. Such a dynamically induced patterning lattice is shown to allow for the active positioning of the neurons and subsequent guided neurite outgrowth, thus finally overcoming the limitations of static approaches. After thorough characterization of the resulting tunable potential landscape, we successfully demonstrate cell adhesion and even growth of the such positioned cells within the well-defined pressure nodes. We demonstrate neuron growth at predetermined positions and observe a subsequent neurite outgrowth, even being correlated with the artificial potential landscape. For the very delicate and sensitive primary neural cells, this is a change of paradigm! Our experimental findings give us confidence that our hybrid lab-on-a-chip system in the near future will allow researchers to study cell-cell interaction of primary neurons. If scaled to a true network level, it will enable us to control and study how neural networks connect, interact, and communicate.


Asunto(s)
Dispositivos Laboratorio en un Chip , Red Nerviosa/efectos de la radiación , Neuronas/efectos de la radiación , Sonido , Animales , Técnicas Analíticas Microfluídicas , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...