Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virchows Arch ; 483(4): 487-495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572156

RESUMEN

Compared to other sarcomas, myxoid liposarcoma (MLS) is exceptionally sensitive to radiation therapy, but the underlying mechanism remains unknown. The objective was to assess the tissue-based changes in MLS during and after neoadjuvant radiotherapy in 26 patients of the DOREMY trial. Morphological assessment was performed on biopsies pre-treatment, after 8 fractions, 16 factions, and after surgical resection and included percentage of viable tumor cells, hyalinization, necrosis, and fatty maturation. Furthermore, immunohistochemistry was performed for apoptosis (cleaved caspase-3), anti-apoptosis (Bcl-2), activity of mTOR signaling (phospho-S6), hypoxia (CAIX), proliferation (Ki67), inflammation (CD45 and CD68), and microvessel density (CD34 Chalkley count). A pronounced reduction in vital tumor cells was observed early with a drop to 32.5% (median) tumor cells (IQR 10-93.8%) after 8 fractions. This decreased further to 10% (IQR 5-30%) after 16 fractions and 7.5% (IQR 5-15%) in the surgical specimen. All but one patient had an excellent response with < 50% remaining tumor cells. Inversely, treatment response was mainly observed as hyalinization and less often as fatty maturation. Additionally, a decrease of inflammatory cells was noticed especially during the first eight fractions. Microvessel density remained stable over time. Immunohistochemical markers for apoptosis, anti-apoptosis, activity of mTOR signaling, proliferation, and hypoxia did not show any marked changes within the remaining tumor cells during and after radiotherapy. As a modest dose of neoadjuvant radiotherapy induces profound tissue changes in MLS, mainly during the first 8 fractions, current findings might suggest that in a carefully selected patient population further deintensification of radiotherapy might be explored.


Asunto(s)
Liposarcoma Mixoide , Adulto , Humanos , Liposarcoma Mixoide/radioterapia , Terapia Neoadyuvante , Apoptosis , Hipoxia , Serina-Treonina Quinasas TOR
2.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200964

RESUMEN

For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.


Asunto(s)
Acrilamidas/farmacología , Neoplasias Óseas/tratamiento farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , NAD/metabolismo , Osteosarcoma/tratamiento farmacológico , Pentosiltransferasa/antagonistas & inhibidores , Piperidinas/farmacología , Apoptosis , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular , Glioma/metabolismo , Glioma/patología , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Células Tumorales Cultivadas
3.
Oncotarget ; 8(51): 88751-88759, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29179472

RESUMEN

BACKGROUND: peripheral nerve sheath tumors comprise a broad spectrum of neoplasms. Vestibular schwannomas and plexiform neurofibromas are symptomatic albeit benign, but a subset of the latter pre-malignant lesions will transform to malignant peripheral nerve sheath tumors (MPNST). Surgery and radiotherapy are the primary strategies to treat these tumors. Intrinsic resistance to drug therapy characterizes all three tumor subtypes. The breast cancer resistance protein BCRP is a transmembrane efflux transporter considered to play a key role in various biological barriers such as the blood brain barrier. At the same time it is associated with drug resistance in various tumors. Its potential role in drug resistant tumors of the peripheral nervous system is largely unknown. OBJECTIVE: to assess if BCRP is expressed in vestibular schwannomas, plexiform neurofibromas and MPNST. MATERIAL AND METHODS: immunohistochemical staining for BCRP was performed on a tissue microarray composed out of 22 vestibular schwannomas, 10 plexiform neurofibromas and 18 MPNSTs. RESULTS: sixteen out of twenty-two vestibular schwannomas (73%), nine out of ten plexiform neurofibromas (90%) and six out of eighteen MPNST (33%) expressed BCRP in the vasculature. Tumor cells were negative. CONCLUSION: BCRP is present in the vasculature of vestibular schwannomas, plexiform neurofibromas and MPSNT. Therefore, it may reduce the drug exposure of underlying tumor tissues and potentially cause failure of drug therapy.

4.
Virchows Arch ; 462(2): 211-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23224067

RESUMEN

Sporadic vestibular schwannomas are benign tumors originating from the Schwann cells of the vestibular portion of the eigth cranial nerve. An important clinical hallmark of these tumors is their variable growth rate. Investigating vestibular schwannoma biology can help to clarify this variable growth rate and may offer targets for therapeutic treatment. A recent mutation analysis on sporadic non-head and neck schwannomas detected BRAF mutations in around 20 % of tumors. BRAF is part of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. MAPK/ERK activation is associated with an uncontrolled cell growth. Mutated BRAF can function as a target to inhibit this pathway. Mutations in BRAF and other members of the MAPK/ERK pathway have not been investigated in sporadic vestibular schwannomas before. The goal of this study was to investigate if these mutations are present in vestibular schwannomas and whether these mutations correlate with tumor growth. Tumor specimens of 48 patients surgically treated for a sporadic vestibular schwannoma were analyzed. An allele-specific quantitative real-time PCR assay was performed to detect the 13 most frequent mutations affecting BRAF, EGFR, PIK3CA, and KRAS. Radiologically measured tumor growth was included in the analysis to identify potential relationships between these mutations and tumor progression. No activating hotspot mutations in BRAF, EGFR, PIK3CA, or KRAS were detected. The 13 most frequent mutations affecting BRAF, EGFR, PIK3CA, and KRAS are not involved in sporadic vestibular schwannoma development. These results are in contrast to the recent detection of these BRAF mutations in non-head and neck schwannomas.


Asunto(s)
Receptores ErbB/genética , Mutación/genética , Neoplasias de Tejido Nervioso/genética , Neuroma Acústico/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de Tejido Nervioso/patología , Neuroma Acústico/patología , Proteínas Proto-Oncogénicas p21(ras) , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...