Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678569

RESUMEN

Parenteral N-acetylcysteine has a wide variety of clinical applications, but its use can be limited by a poor chemical stability. We managed to control parenteral N-acetylcysteine stability, and to study the influence of additives on the decrease of N-acetylcysteine degradation. First, an HPLC-UV dosing method of N-acetylcysteine and its main degradation product, a dimer, was validated and the stability without additive was studied. Then, the influence of several additives (ascorbic acid, sodium edetate, tocopherol and zinc) and of temperature on N-acetylcysteine dimerization was evaluated. Finally, the influence of zinc gluconate at different concentrations (administrable to patients) was investigated. Zinc gluconate at 62.5 µg·mL-1 allows the stabilization of 25 mg·mL-1 N-acetylcysteine solution for at least 8 days when stored at 5 ± 3 °C.

2.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408570

RESUMEN

Human American trypanosomiasis, called Chagas disease, caused by T. cruzi protozoan infection, represents a major public health problem, with about 7000 annual deaths in Latin America. As part of the search for new and safe anti-Trypanosoma cruzi derivatives involving nitroheterocycles, we report herein the synthesis of ten 1-substituted 2-nitropyrrole compounds and their biological evaluation. After an optimization phase, a convergent synthesis methodology was used to obtain these new final compounds in two steps from the 2-nitropyrrole starting product. All the designed derivatives follow Lipinski's rule of five. The cytotoxicity evaluation on CHO cells showed no significant cytotoxicity, except for compound 3 (CC50 = 24.3 µM). Compound 18 appeared to show activity against T. cruzi intracellular amastigotes form (EC50 = 3.6 ± 1.8 µM) and good selectivity over the vero host cells. Unfortunately, this compound 18 showed an insufficient maximum effect compared to the reference drug (nifurtimox). Whether longer duration treatments may eliminate all parasites remains to be explored.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Cricetinae , Cricetulus , Humanos , Pirroles , Relación Estructura-Actividad
3.
J Pharm Technol ; 37(4): 178-185, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34752583

RESUMEN

Background: Beyond-use dates (BUDs) in compounding practice are assigned from stability studies. The United States Pharmacopoeia (USP 42 NF 37) suggested to assign a 6 months BUD for dry oral forms. A new pediatric formula of amiodarone capsules was implemented in our hospital, with 3 dosages (5 mg, 20 mg, and 50 mg). Objective: BUD of these new formulas had to be determined by stability study. Methods: The method for the determination of amiodarone content was validated to be stability indicating, and a stability study was performed. Different excipients commonly used for capsule compounding were compared. Results: We found that, with microcrystalline cellulose as excipient, 50 mg amiodarone capsules were stable for 1 year, whereas 5 mg and 20 mg capsules were not. This difference was studied, and lactose or mannitol were found to be better excipients for 5 mg amiodarone capsules, despite their potential side effects. A potential drug-excipient interaction between microcrystalline cellulose and amiodarone hydrochloride is described. Conclusion: Amiodarone hydrochloride/microcrystalline cellulose capsules have a BUD of 1 month for 5 mg capsules, 6 months for 20 mg, and 1 year for 50 mg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...