Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 5843-5854, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387076

RESUMEN

The combination of a tailored sulfamate with a C4-symmetrical rhodium(II) tetracarboxylate allows to uncover a selective intermolecular amination of unactivated homobenzylic C(sp3)-H bonds. The reaction has a broad scope (>30 examples) and proceeds with a high level of regioselectivity with homobenzylic/benzylic ratio of up to 35:1, thereby providing a direct access to ß-arylethylamines that are of utmost interest in medicinal chemistry. Computational investigations evidenced a concerted mechanism, involving an asynchronous transition state. Based on a combined activation strain model and energy decomposition analysis, the regioselectivity of the reaction was found to rely mainly on the degree of orbital interaction between the [Rh2]-nitrene and the C-H bond. The latter is facilitated at the homobenzylic position due to the establishment of specific noncovalent interactions within the catalytic pocket.

2.
J Am Chem Soc ; 144(37): 17156-17164, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36094904

RESUMEN

C4-Symmetrical dirhodium(II) tetracarboxylates are highly efficient catalysts for the asymmetric intermolecular aziridination of substituted alkenes with sulfamates. The reaction proceeds with high levels of efficiency and chemoselectivity to afford aziridines with excellent yields of up to 95% and enantiomeric excesses of up to 99%. The scope of the alkene aziridination includes mono-, di-, and trisubstituted olefins as well as the late-stage functionalization of complex substrates. The reaction can be performed on a gram-scale with a catalyst loading of 0.1 mol %. Our DFT study led us to propose a two-spin-state mechanism, involving a triplet Rh-nitrene species as key intermediate to drive the stereocontrolled approach and activation of the substrate.


Asunto(s)
Aziridinas , Rodio , Alquenos/química , Aziridinas/química , Catálisis , Rodio/química , Estereoisomerismo
3.
J Am Chem Soc ; 143(17): 6407-6412, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900759

RESUMEN

A catalytic intermolecular amination of nonactivated tertiary C(sp3)-H bonds (BDE of 96 kcal·mol-1) is reported for substrates displaying an activated benzylic site (BDE of 85 kcal·mol-1). The tertiary C(sp3)-H bond is selectively functionalized to afford α,α,α-trisubstituted amides in high yields. This unusual site-selectivity results from the synergistic combination of Rh2(S-tfpttl)4, a rhodium(II) complex with a well-defined catalytic pocket, with tert-butylphenol sulfamate (TBPhsNH2), which leads to a discriminating rhodium-bound nitrene species under mild oxidative conditions. This catalytic system is very robust, and the reaction was performed on a 50 mmol scale with only 0.01 mol % of catalyst. The TBPhs group can be removed under mild conditions to afford the corresponding NH-free amines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...