Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Brain Behav Immun ; 119: 146-153, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38555986

RESUMEN

BACKGROUND: Perinatal depression (including antenatal-, postnatal-, and depression that spans both timepoints) is a prevalent disorder with high morbidity that affects both mother and child. Even though the full biological blueprints of perinatal depression remain incomplete, multiple studies indicate that, at least for antenatal depression, the disorder has an inflammatory component likely linked to a dysregulation of the enzymatic kynurenine pathway. The production of neuroactive metabolites in this pathway, including quinolinic acid (QUIN), is upregulated in the placenta due to the multiple immunological roles of the metabolites during pregnancy. Since neuroactive metabolites produced by the pathway also may affect mood by directly affecting glutamate neurotransmission, we sought to investigate whether the placental expression of kynurenine pathway enzymes controlling QUIN production was associated with both peripheral inflammation and depressive symptoms during pregnancy. METHODS: 68 placentas obtained at birth were analyzed using qPCR to determine the expression of kynurenine pathway enzymes. Cytokines and metabolites were quantified in plasma using high-sensitivity electroluminescence and ultra-performance liquid chromatography, respectively. Maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) throughout pregnancy and the post-partum. Associations between these factors were assessed using robust linear regression with ranked enzymes. RESULTS: Low placental quinolinate phosphoribosyl transferase (QPRT), the enzyme responsible for degrading QUIN, was associated with higher IL-6 and higher QUIN/kynurenic acid ratios at the 3rd trimester. Moreover, women with severe depressive symptoms in the 3rd trimester had significantly lower placental expression of both QPRT and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD); impaired activity of these two enzymes leads to QUIN accumulation. CONCLUSION: Overall, our data support that a compromised placental environment, featuring low expression of critical kynurenine pathway enzymes is associated with increased levels of plasma cytokines and the dysregulated kynurenine metabolite pattern observed in depressed women during pregnancy.

2.
Mol Psychiatry ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938766

RESUMEN

Suicide rates have increased steadily world-wide over the past two decades, constituting a serious public health crisis that creates a significant burden to affected families and the society as a whole. Suicidal behavior involves a multi-factorial etiology, including psychological, social and biological factors. Since the molecular neural mechanisms of suicide remain vastly uncharacterized, we examined transcriptional- and methylation profiles of postmortem brain tissue from subjects who died from suicide as well as their neurotypical healthy controls. We analyzed temporal pole tissue from 61 subjects, largely free from antidepressant and antipsychotic medication, using RNA-sequencing and DNA-methylation profiling using an array that targets over 850,000 CpG sites. Expression of NPAS4, a key regulator of inflammation and neuroprotection, was significantly downregulated in the suicide decedent group. Moreover, we identified a total of 40 differentially methylated regions in the suicide decedent group, mapping to seven genes with inflammatory function. There was a significant association between NPAS4 DNA methylation and NPAS4 expression in the control group that was absent in the suicide decedent group, confirming its dysregulation. NPAS4 expression was significantly associated with the expression of multiple inflammatory factors in the brain tissue. Overall, gene sets and pathways closely linked to inflammation were significantly upregulated, while specific pathways linked to neuronal development were suppressed in the suicide decedent group. Excitotoxicity as well as suppressed oligodendrocyte function were also implicated in the suicide decedents. In summary, we have identified central nervous system inflammatory mechanisms that may be active during suicidal behavior, along with oligodendrocyte dysfunction and altered glutamate neurotransmission. In these processes, NPAS4 might be a master regulator, warranting further studies to validate its role as a potential biomarker or therapeutic target in suicidality.

3.
Brain Sci ; 13(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979315

RESUMEN

Suicide, a global health burden, represents the 17th leading cause of death worldwide (1.3%), but the 4th among young people aged between 15 and 29 years of age, according to World Health Organization (WHO), 2019. Suicidal behaviour is a complex, multi-factorial, polygenic and independent mental health problem caused by a combination of alterations and dysfunctions of several biological pathways and disruption of normal mechanisms in brain regions that remain poorly understood and need further investigation to be deciphered. Suicide complexity and unpredictability gained international interest as a field of research. Several studies have been conducted at the neuropathological, inflammatory, genetic, and molecular levels to uncover the triggers behind suicidal behaviour and develop convenient and effective therapeutic or at least preventive procedures. This review aims to summarise and focus on current knowledge of diverse biological pathways involved in the neurobiology of suicidal behaviour, and briefly highlights future potential therapeutic pathways to prevent or even treat this significant public health problem.

4.
Acta Neuropathol ; 145(5): 541-559, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991261

RESUMEN

Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Infecciones Urinarias , Ratones , Femenino , Animales , Sinucleinopatías/patología , Estudios de Casos y Controles , Escherichia coli , Ratones Transgénicos , alfa-Sinucleína , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/patología , Infecciones Urinarias/complicaciones , Inmunidad Innata
6.
Front Cell Neurosci ; 16: 944875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187297

RESUMEN

There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia® Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson's disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia® platform for study-specific adaptation and validation.

7.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723531

RESUMEN

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Butiratos , Depresión/genética , Epigénesis Genética , Microbioma Gastrointestinal/genética , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/microbiología
8.
Neurobiol Dis ; 169: 105720, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35417751

RESUMEN

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are apparent after a high proportion of dopamine neurons in the substantia nigra have degenerated. The vast majority of PD cases are sporadic, and the underlying pathobiological causes are poorly understood. Adults exhibit great variability in the numbers of nigral dopamine neurons, suggesting that factors during embryonic or early life regulate the development and physiology of dopaminergic neurons. Furthermore, exposure to infections and inflammation in utero has been shown to affect fetal brain development in models of schizophrenia and autism. Here, we utilize a mouse maternal infection model to examine how maternal herpesvirus infection impacts dopaminergic neuron-related gene and protein expression in the adult offspring. METHODS: Pregnant mice were injected with murine cytomegalovirus (MCMV), murine gamma herpes virus-68 (MHV68) or phosphate buffered saline (PBS) at embryonic day 8.5. Offspring were sacrificed at eight weeks of age and midbrains were processed for whole genome RNA sequencing, DNA methylation analysis, targeted protein expression and high-performance liquid chromatography for quantification of dopamine and its metabolites. RESULTS: The midbrain of adult offspring from MHV68 infected dams had significantly decreased expression of genes linked to dopamine neurons (Th, Lmx1b, and Foxa1) and increased Lrrk2, a gene involved in familial PD and PD risk that associates with neuroinflammation. Deconvolution analysis revealed that the proportion of dopamine neuron genes in the midbrain was reduced. There was an overall increase in DNA methylation in the midbrain of animals from MHV68-infected dams and pathway analyses indicated mitochondrial dysfunction, with reductions in genes associated with ATP synthesis, mitochondrial respiratory chain, and mitochondrial translation in the offspring of dams infected with MHV68. TIGAR (a negative regulator of mitophagy) and SDHA (mitochondrial complex II subunit) protein levels were increased, and the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum were increased in these offspring compared to offspring from uninfected control dams. No such changes were observed in the offspring of dams infected with MCMV. CONCLUSION: Our data suggest that maternal infection with Herpesviridae, specifically MHV68, can trigger changes in the development of the midbrain that impact dopamine neuron physiology in adulthood. Our work is of importance for the understanding of neuronal susceptibility underlying neurodegenerative disease, with particular relevance for PD.


Asunto(s)
Infecciones por Herpesviridae , Herpesviridae , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Herpesviridae/metabolismo , Infecciones por Herpesviridae/metabolismo , Mesencéfalo/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Embarazo , Sustancia Negra/metabolismo
9.
Biol Psychiatry Glob Open Sci ; 2(1): 45-53, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35252950

RESUMEN

BACKGROUND: Depressive disorders are linked to dysfunction in reward-related behaviors and corticostriatal reward circuitry. Low-grade dysregulation of the immune system, e.g., elevations in plasma interleukin 6 (IL-6) and tumor necrosis factor α, have been thought to affect corticostriatal reward circuitry. Little is presently known about the degree to which these relationships generalize to patients with treatment-resistant depression (TRD) and/or childhood trauma history. METHODS: Resting-state functional connectivity between the ventral striatum (VS) and ventromedial prefrontal cortex (vmPFC) regions and plasma inflammatory marker levels (IL-6, tumor necrosis factor α) were measured in 74 adults with TRD. Regression analyses examined associations of inflammatory markers with VS-vmPFC connectivity and the moderating effects of self-reported childhood trauma on these associations, with exploratory analyses examining trauma subtypes. RESULTS: IL-6 was negatively associated with VS-vmPFC connectivity (specifically for the left VS). Childhood trauma moderated the relationships between tumor necrosis factor α and VS-vmPFC connectivity (specifically for the right VS) such that greater childhood trauma severity (particularly emotional neglect) was associated with stronger cytokine-connectivity associations. CONCLUSIONS: This study independently extends previously reported associations between IL-6 and reductions in corticostriatal connectivity to a high-priority clinical population of treatment-seeking patients with TRD and further suggests that childhood trauma moderates specific associations between cytokines and corticostriatal connectivity. These findings suggest that associations between elevated plasma cytokine levels and reduced corticostriatal connectivity are a potential pathophysiological mechanism generalizable to patients with TRD and that such associations may be affected by trauma severity.

10.
Neurobiol Dis ; 166: 105654, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143968

RESUMEN

Alpha-synuclein (α-syn) has been suggested to have many functions including, vesicle transport in neurons, transcriptional regulator, modulator of immune cell maturation and response, and a role as an antimicrobial peptide. This protein forms insoluble aggregates, called Lewy bodies, in several neurodegenerative diseases, termed synucleinopathies, including Parkinson's disease (PD), Multiple System Atrophy, and Lewy Body Dementia, and aggregates are also commonly found in Alzheimer's disease. Moreover, multiplications and point mutations in the gene cause rare autosomal dominant forms of parkinsonism, which resemble sporadic PD. It has been suggested that the accumulation of α-syn in the monomeric state followed by aggregation of the protein and seeding of further pathogenic α-syn aggregates are key steps in the pathogenesis of synucleinopathies. The triggers of α-syn aggregation in neurodegeneration are unknown, but inflammation caused by bacterial and viral pathogens or exposure to environmental toxins have been implicated. The purpose of this review is to present emerging evidence that α-syn may play a role in the immune response to pathogens. We present recent findings suggesting that upregulation of α-syn levels is a normal response to infections. We propose that under certain conditions (e.g., dysregulated inflammatory responses due to genetic predisposition and aging), monomeric α-syn will form oligomers that are taken up by nerve endings and undergo axonal transport to the central nervous system, where they can aggregate into pathogenic fibrils. Under unfavorable conditions, we suggest that this process can trigger neurodegenerative disease. Therefore, a deeper understanding of the roles of α-syn in the immune system could provide crucial insights into the origins of synucleinopathies.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , Regulación hacia Arriba , alfa-Sinucleína/metabolismo
11.
Transl Psychiatry ; 12(1): 35, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078975

RESUMEN

Depression during and after pregnancy affects up to 20% of pregnant women, but the biological underpinnings remain incompletely understood. As pregnancy progresses, the immune system changes to facilitate fetal development, leading to distinct fluctuations in the production of pro-inflammatory factors and neuroactive tryptophan metabolites throughout the peripartum period. Therefore, it is possible that depression in pregnancy could constitute a specific type of inflammation-induced depression. Both inflammatory factors and kynurenine metabolites impact neuroinflammation and glutamatergic neurotransmission and can therefore affect mood and behavior. To determine whether cytokines and kynurenine metabolites can predict the development of depression in pregnancy, we analyzed blood samples and clinical symptoms in 114 women during each trimester and the postpartum. We analyzed plasma IL-1ß, IL-2, -6, -8, -10, TNF, kynurenine, tryptophan, serotonin, kynurenic- quinolinic- and picolinic acids and used mixed-effects models to assess the association between biomarkers and depression severity. IL-1ß and IL-6 levels associated positively with severity of depressive symptoms across pregnancy and the postpartum, and that the odds of experiencing significant depressive symptoms increased by >30% per median absolute deviation for both IL-1ß and IL-6 (both P = 0.01). A combination of cytokines and kynurenine metabolites in the 2nd trimester had a >99% probability of accurately predicting 3rd trimester depression, with an ROC AUC > 0.8. Altogether, our work shows that cytokines and tryptophan metabolites can predict depression during pregnancy and could be useful as clinical markers of risk. Moreover, inflammation and kynurenine pathway enzymes should be considered possible therapeutic targets in peripartum depression.


Asunto(s)
Depresión , Triptófano , Citocinas , Femenino , Humanos , Quinurenina , Enfermedades Neuroinflamatorias , Embarazo
12.
Trends Endocrinol Metab ; 33(2): 147-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949514

RESUMEN

Two hallmarks of Parkinson's disease (PD) are the widespread deposition of misfolded alpha-synuclein (αSyn) protein in the nervous system and loss of substantia nigra dopamine neurons. Recent research has suggested that αSyn aggregates in the enteric nervous system (ENS) lead to prodromal gastrointestinal (GI) symptoms such as constipation in PD, then propagating to the brain stem and eventually triggering neurodegeneration and motor symptoms. Additionally, whether the microbiome changes in PD contribute to the primary pathogenesis or, alternatively, are consequential to either the disease process or medication is still unclear. In this review, we discuss the possible roles of αSyn and microbiome changes in the GI system in PD and consider if and how the changes interact and contribute to the disease process and symptoms.


Asunto(s)
Sistema Nervioso Entérico , Microbiota , Enfermedad de Parkinson , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Tracto Gastrointestinal/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
13.
Sci Rep ; 11(1): 24384, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934078

RESUMEN

A growing body of evidence suggests nigral iron accumulation plays an important role in the pathophysiology of Parkinson's disease (PD), contributing to dopaminergic neuron loss in the substantia nigra pars compacta (SNc). Converging evidence suggests this accumulation might be related to, or increased by, serotonergic dysfunction, a common, often early feature of the disease. We investigated whether lower plasma serotonin in PD is associated with higher nigral iron. We obtained plasma samples from 97 PD patients and 89 controls and MRI scans from a sub-cohort (62 PD, 70 controls). We measured serotonin concentrations using ultra-high performance liquid chromatography and regional iron content using MRI-based quantitative susceptibility mapping. PD patients had lower plasma serotonin (p < 0.0001) and higher nigral iron content (SNc: p < 0.001) overall. Exclusively in PD, lower plasma serotonin was correlated with higher nigral iron (SNc: r(58) = - 0.501, p < 0.001). This correlation was significant even in patients newly diagnosed (< 1 year) and stronger in the SNc than any other region examined. This study reveals an early, linear association between low serotonin and higher nigral iron in PD patients, which is absent in controls. This is consistent with a serotonin-iron relationship in the disease process, warranting further studies to determine its cause and directionality.


Asunto(s)
Hierro/metabolismo , Enfermedad de Parkinson/metabolismo , Serotonina/sangre , Sustancia Negra/metabolismo , Anciano , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Inhibidores de Captación de Serotonina y Norepinefrina/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Índice de Severidad de la Enfermedad , Sustancia Negra/diagnóstico por imagen , Tiempo
14.
Front Psychiatry ; 12: 714014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566716

RESUMEN

Physical activity may prevent anxiety, but the importance of exercise intensity, sex-specific mechanisms, and duration of the effects remains largely unknown. We used an observational study design to follow 395,369 individuals for up to 21 years to investigate if participation in an ultralong-distance cross-country ski race (Vasaloppet, up to 90 km) was associated with a lower risk of developing anxiety. Skiers in the race and matched non-skiers from the general population were studied after participation in the race using the Swedish population and patient registries. Skiers (n = 197,685, median age 36 years, 38% women) had a significantly lower risk of developing anxiety during the follow-up compared to non-skiers (adjusted hazard ratio, HR 0.42). However, among women, higher physical performance (measured as the finishing time to complete the race, a proxy for higher exercise dose) was associated with an increased risk of anxiety compared to slower skiing women (HR 2.00). For men, the finishing time of the race did not significantly impact the risk of anxiety. Our results support the recommendations of engaging in physical activity to decrease the risk of anxiety in both men and women. The impact of physical performance level on the risk of anxiety requires further investigations among women.

15.
J Parkinsons Dis ; 11(2): 821-832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682730

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) and the genetic risk landscape of autoimmune disorders and Parkinson's disease (PD) overlap. Additionally, anti-inflammatory medications used to treat RA might influence PD risk. OBJECTIVE: To use a population-based approach to determine if there is an association between pre-occurring rheumatoid arthritis (RA) and later-life risk of PD. METHODS: The study population was 3.6 million residents of Sweden, who were alive during part or all of the follow-up period; 1997-2016. We obtained diagnoses from the national patient registry and identified 30,032 PD patients, 8,256 of whom each was matched to ten controls based on birth year, sex, birth location, and time of follow-up. We determined the risk reduction for PD in individuals previously diagnosed with RA. We also determined if the time (in relation to the index year) of the RA diagnosis influenced PD risk and repeated the analysis in a sex-stratified setting. RESULTS: Individuals with a previous diagnosis of RA had a decreased risk of later developing PD by 30-50% compared to individuals without an RA diagnosis. This relationship was strongest in our conservative analysis, where the first PD diagnosis occurred close to the earliest PD symptoms (odds ratio 0.47 (CI 95% 0.28-0.75, p = 0.0006); with the greatest risk reduction in females (odds ratio 0.40 (CI 95% 0,19-0.76, p = 0.002). DISCUSSION: Our findings provide evidence that individuals diagnosed with RA have a significantly lower risk of developing PD than the general population. Our data should be considered when developing or repurposing therapies aimed at modifying the course of PD.


Asunto(s)
Artritis Reumatoide , Enfermedad de Parkinson , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Estudios de Casos y Controles , Femenino , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Factores de Riesgo , Suecia/epidemiología
16.
J Parkinsons Dis ; 11(2): 585-603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579871

RESUMEN

BACKGROUND: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , Sustancia Negra/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo
17.
Metabolites ; 11(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406628

RESUMEN

The gut microbiome can impact brain health and is altered in Parkinson's disease (PD). The vermiform appendix is a lymphoid tissue in the cecum implicated in the storage and regulation of the gut microbiota. We sought to determine whether the appendix microbiome is altered in PD and to analyze the biological consequences of the microbial alterations. We investigated the changes in the functional microbiota in the appendix of PD patients relative to controls (n = 12 PD, 16 C) by metatranscriptomic analysis. We found microbial dysbiosis affecting lipid metabolism, including an upregulation of bacteria responsible for secondary bile acid synthesis. We then quantitatively measure changes in bile acid abundance in PD relative to the controls in the appendix (n = 15 PD, 12 C) and ileum (n = 20 PD, 20 C). Bile acid analysis in the PD appendix reveals an increase in hydrophobic and secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA). Further proteomic and transcriptomic analysis in the appendix and ileum corroborated these findings, highlighting changes in the PD gut that are consistent with a disruption in bile acid control, including alterations in mediators of cholesterol homeostasis and lipid metabolism. Microbially derived toxic bile acids are heightened in PD, which suggests biliary abnormalities may play a role in PD pathogenesis.

18.
Compr Psychoneuroendocrinol ; 8: 100097, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35757662

RESUMEN

Objective: As the number of refugees continues to rise, there is growing concern about the impact from trauma exposures on their mental health. However, there is a limited understanding of possible biological mechanisms contributing to the substantial inter-individual differences in trauma-related outcomes, especially as it relates to positive mental health. Only sparse work has focused on the biology of positive mental health, including energy and sleep, in trauma-exposed persons. In this study, we analyzed cytokines in blood from newly arrived refugees with differential trauma exposures in relationship to self-reported energy, as a key marker of positive mental health. Methods: Within the first month of arrival in the USA, 64 refugees from Iraq and Syria were interviewed. Refugees completed the clinical DSM-IV PTSD-Checklist Civilian Version (PCL-C), the Beck Anxiety Inventory (BAI), and the Hospital Anxiety and Depression Scale (HADS). Ten psychiatrically healthy non-refugee persons were used as healthy controls to compare levels of cytokines. Blood samples were collected at the time of the interview and subsequently analyzed for IL-1ß, IL-6, IL-8, IL-10, and TNF-α concentrations. Results: Energy correlated positively with current concentration ability and sleep quality, and negatively with stress, PCL-C, BAI and HADS scores (Spearman correlations, all p<0.05). Refugees had lower levels of IL-10 compared to controls (p<0.05). IL-10 levels in refugees correlated with higher energy levels (p<0.01). Conclusions: Results suggest that self-reported energy is a key component of positive mental health in newly arrived traumatized refugees. Additionally, the anti-inflammatory cytokine IL-10 could be a marker of, or causally associated with positive mental health. A better understanding of the balance between pro- and anti-inflammatory states in highly traumatized individuals has the potential to create more targeted and effective treatments with implications for long-term health outcomes.

20.
J Affect Disord ; 281: 9-12, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33278766

RESUMEN

BACKGROUND: Depression during and after pregnancy is common, affecting at least 15% of women. Features of depression in pregnancy range from mild symptoms of disrupted mood and interest to severe depression and suicidal behavior. Previous studies suggest hormone- and immune dysregulations might contribute to post-partum depression, but consistent evidence is lacking. METHODS: A total of 163 women were included in the study in the post-partum. Peri-partum depression (PPD) was diagnosed using SCID interviews and depressive symptoms were quantified using the Edinburgh Perinatal Depression Rating Scale (EPDS), retrospectively long-term, as well as acutely. Plasma estrogen, progesterone, pro- and anti-inflammatory cytokines and kynurenine metabolites were measured in the post-partum. RESULTS: Higher estrogen and progesterone in the post-partum were linked to more severe depressive symptoms over pregnancy. In the post-partum, estrogen was positively correlated with the pro-inflammatory cytokine IL-6 and negatively correlated with kynurenine and picolinic acid. Conversely, progesterone was negatively correlated with IL-1ß and several metabolites in the kynurenine pathway, including quinolinic acid. LIMITATIONS: Associative study design, did not attempt to assess causality. Did not adjust hormone levels for medication effects. CONCLUSIONS: Our study suggests that higher sex hormones in the post-partum are linked to depression severity over pregnancy. Estrogen was coupled with a pro-inflammatory profile and neurotoxic kynurenine metabolites, whereas progesterone was linked to an anti-inflammatory profile in the post-partum.


Asunto(s)
Depresión Posparto , Quinurenina , Estrógenos , Femenino , Humanos , Inflamación , Periodo Posparto , Embarazo , Progesterona , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...