Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Future Microbiol ; 12: 595-607, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28555497

RESUMEN

AIM: Mycobacterium avium infections, especially in immune-compromised individuals, present a significant challenge as therapeutic options are limited. In this study, we investigated if M. avium genome encodes nonclassical transpeptidases and if newer carbapenems are effective against this mycobacteria. MATERIALS & METHODS: Biochemical and microbiological approaches were used to identify and characterize a nonclassical transpeptidase, namely L,D-transpeptidase, in M. avium. RESULTS & CONCLUSION: We describe the biochemical and physiological attributes of a L,D-transpeptidase in M. avium, LdtMav2. Suggestive of a constitutive requirement, levels of LdtMav2, a L,D-transpeptidase in M. avium, remain constant during exponential and stationary phases of growth. Among ß-lactam antibacterials, only a subset of carbapenems inhibit LdtMav2 and tebipenem, a new oral carbapenem, inhibits growth of M. avium.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Complejo Mycobacterium avium/efectos de los fármacos , Complejo Mycobacterium avium/enzimología , Peptidil Transferasas/química , Peptidil Transferasas/genética , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Complejo Mycobacterium avium/genética , Complejo Mycobacterium avium/crecimiento & desarrollo , Peptidil Transferasas/aislamiento & purificación , Peptidil Transferasas/metabolismo , Análisis de Secuencia de ADN , beta-Lactamas/farmacología
2.
Elife ; 42015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25695637

RESUMEN

Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.


Asunto(s)
Codón/genética , Lisina/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Ribosomas/genética , Secuencia de Bases , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Poli A/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Estabilidad del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Fluorescente Roja
3.
Methods Enzymol ; 541: 151-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24674069

RESUMEN

This protocol describes a denaturing polyacrylamide gel system utilizing sodium dodecyl sulfate (SDS) to separate protein molecules based on size as first described by Laemmli (1970). SDS-PAGE can be used to monitor protein purifications, check the purity of samples, and to estimate molecular weights for unknown proteins.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Proteínas/análisis , Electroforesis en Gel de Poliacrilamida/instrumentación , Proteínas/aislamiento & purificación
4.
Methods Enzymol ; 541: 161-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24674070

RESUMEN

This protocol describes Coomassie brilliant blue staining, one of the most common methods of detecting proteins in polyacrylamide gels (PAGE).


Asunto(s)
Electroforesis en Gel de Poliacrilamida , Colorantes de Rosanilina
5.
RNA ; 20(5): 609-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24667215

RESUMEN

Translation termination is promoted by class 1 and class 2 release factors in all domains of life. While the role of the bacterial class 1 factors, RF1 and RF2, in translation termination is well understood, the precise contribution of the bacterial class 2 release factor, RF3, to this process remains less clear. Here, we use a combination of binding assays and pre-steady state kinetics to provide a kinetic and thermodynamic framework for understanding the role of the translational GTPase RF3 in bacterial translation termination. First, we find that GDP and GTP have similar affinities for RF3 and that, on average, the t1/2 for nucleotide dissociation from the protein is 1-2 min. We further show that RF3:GDPNP, but not RF3:GDP, tightly associates with the ribosome pre- and post-termination complexes. Finally, we use stopped-flow fluorescence to demonstrate that RF3:GTP enhances RF1 dissociation rates by over 500-fold, providing the first direct observation of this step. Importantly, catalytically inactive variants of RF1 are not rapidly dissociated from the ribosome by RF3:GTP, arguing that a rotated state of the ribosome must be sampled for this step to efficiently occur. Together, these data define a more precise role for RF3 in translation termination and provide insights into the function of this family of translational GTPases.


Asunto(s)
Proteínas de Escherichia coli/genética , GTP Fosfohidrolasas/genética , Factores de Terminación de Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/genética , Catálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Nucleótidos/genética , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Ribosomas/metabolismo , Termodinámica
6.
Methods Enzymol ; 530: 101-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24034317

RESUMEN

This protocol describes the synthesis and purification of RNAs using plasmid DNA or PCR-amplified DNA as a template. This procedure should give NTP-free, full-length RNA for all sizes of RNA. This protocol is derived from Milligan and Uhlenbeck, the classic paper on T7 transcription reactions, with modifications.


Asunto(s)
Bacteriófago T7/genética , ADN/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , ARN/genética , ADN/aislamiento & purificación , Fenol/química , ARN/química , ARN/aislamiento & purificación , Moldes Genéticos , Transcripción Genética
7.
Nat Struct Mol Biol ; 17(2): 144-50, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20062058

RESUMEN

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) bind to Argonaute (AGO) family proteins to form a related set of effector complexes that have diverse roles in post-transcriptional gene regulation throughout the eukaryotic lineage. Here sequence and structural analysis of the MID domain of the AGO proteins identified similarities with a family of allosterically regulated bacterial ligand-binding domains. We used in vitro and in vivo approaches to show that certain AGO proteins (those involved in translational repression) have conserved this functional allostery between two distinct sites, one involved in binding miRNA-target duplex and the other in binding the 5' cap feature (m(7)GpppG) of eukaryotic mRNAs. This allostery provides an explanation for how miRNA-bound effector complexes may avoid indiscriminate repressive action (mediated through binding interactions with the cap) before full target recognition.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , MicroARNs/metabolismo , Caperuzas de ARN/metabolismo , Regulación Alostérica , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
8.
EMBO J ; 27(24): 3322-31, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19020518

RESUMEN

The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNA(Phe), Trp-tRNA(Trp), or Leu-tRNA(LeuI). The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same 'loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon-anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.


Asunto(s)
Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Estructura Cuaternaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Inhibidores de la Síntesis de la Proteína/farmacología , Piridonas/farmacología
9.
Mol Cell ; 32(2): 190-7, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951087

RESUMEN

A crucial step in translation is the translocation of tRNAs through the ribosome. In the transition from one canonical site to the other, the tRNAs acquire intermediate configurations, so-called hybrid states. At this stage, the small subunit is rotated with respect to the large subunit, and the anticodon stem loops reside in the A and P sites of the small subunit, while the acceptor ends interact with the P and E sites of the large subunit. In this work, by means of cryo-EM and particle classification procedures, we visualize the hybrid state of both A/P and P/E tRNAs in an authentic factor-free ribosome complex during translocation. In addition, we show how the repositioning of the tRNAs goes hand in hand with the change in the interplay between S13, L1 stalk, L5, H68, H69, and H38 that is caused by the ratcheting of the small subunit.


Asunto(s)
ARN de Transferencia/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/fisiología , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/fisiología
10.
RNA ; 14(8): 1526-31, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18567817

RESUMEN

Peptide release on the ribosome is catalyzed by protein release factors (RFs) on recognition of stop codons positioned in the A site of the small ribosomal subunit. Here we show that the 2' OH of the peptidyl-tRNA substrate plays an essential role in catalysis of the peptide release reaction. These observations parallel earlier studies of the mechanism of the peptidyl transfer reaction and argue that related mechanisms are at the heart of catalysis for these reactions.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/química
11.
Nat Struct Mol Biol ; 14(1): 30-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159993

RESUMEN

Accurate discrimination between cognate and near-cognate aminoacyl-tRNAs during translation relies on the specific acceleration of forward rate constants for cognate tRNAs. Such specific rate enhancement correlates with conformational changes in the tRNA and small ribosomal subunit that depend on an RNA-specific type of interaction, the A-minor motif, between universally conserved 16S ribosomal RNA nucleotides and the cognate codon-anticodon helix. We show that perturbations of these two components of the A-minor motif, the conserved rRNA bases and the codon-anticodon helix, result in distinct outcomes. Although both cause decreases in the rates of tRNA selection that are rescued by aminoglycoside antibiotics, only disruption of the codon-anticodon helix is overcome by a miscoding tRNA variant. On this basis, we propose that two independent molecular requirements must be met to allow tRNAs to proceed through the selection pathway, providing a mechanism for exquisite control of fidelity during this step in gene expression.


Asunto(s)
Escherichia coli/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/metabolismo , Aminoglicósidos/metabolismo , Anticodón , Codón , Escherichia coli/química , Escherichia coli/metabolismo , Mutagénesis , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
12.
Nat Struct Mol Biol ; 13(3): 234-41, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16501572

RESUMEN

The GTPase elongation factor (EF)-G is responsible for promoting the translocation of the messenger RNA-transfer RNA complex on the ribosome, thus opening up the A site for the next aminoacyl-tRNA. Chemical modification and cryo-EM studies have indicated that tRNAs can bind the ribosome in an alternative 'hybrid' state after peptidyl transfer and before translocation, though the relevance of this state during translation elongation has been a subject of debate. Here, using pre-steady-state kinetic approaches and mutant analysis, we show that translocation by EF-G is most efficient when tRNAs are bound in a hybrid state, supporting the argument that this state is an authentic intermediate during translation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Mutación/genética , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Esparsomicina/farmacología
13.
RNA ; 12(1): 33-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16373492

RESUMEN

Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.


Asunto(s)
Peptidil Transferasas/metabolismo , Peptidil Transferasas/farmacocinética , ARN Ribosómico/química , Ribosomas/enzimología , Sitios de Unión , Catálisis , Concentración de Iones de Hidrógeno , Mutación , Puromicina/metabolismo , ARN Ribosómico/genética , Ribosomas/química , Ribosomas/genética
14.
Cell ; 117(5): 589-99, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15163407

RESUMEN

Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally conserved nucleotides in the innermost layer of the active site: A2451, U2506, U2585, and A2602. While pre-steady-state kinetic analysis of the peptidyl transferase activity of the mutant ribosomes reveals substantially reduced rates of peptide bond formation using the minimal substrate puromycin, their rates of peptide bond formation are unaffected when the substrates are intact aminoacyl-tRNAs. These mutant ribosomes do, however, display substantial defects in peptide release. These results reveal a view of the catalytic center in which an inner shell of conserved nucleotides is pivotal for peptide release, while an outer shell is responsible for promoting peptide bond formation.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Sitios de Unión/fisiología , Cromatografía de Afinidad , Secuencia Conservada , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Magnesio/metabolismo , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/genética , Temperatura
15.
Mol Cell ; 12(2): 321-8, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14536072

RESUMEN

Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.


Asunto(s)
ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Transporte Biológico , Cisteína/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Factor G de Elongación Peptídica/metabolismo , Fenilalanina/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo , Factores de Tiempo
16.
J Mol Biol ; 324(4): 611-23, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12460565

RESUMEN

Translation of polyphenylalanine from a polyuridine template by the ribosome in the absence of the elongation factors EFG and EFTu (and the energy derived from GTP hydrolysis) is promoted by modification of the ribosome with thiol-specific reagents such as para-chloromercuribenzoate (pCMB). Here, we examine the translational cycle of modified ribosomes and show that peptide bond formation and tRNA binding are largely unaffected, whereas translocation of the mRNA:tRNA complex is substantially promoted by pCMB modification. The translocation movements that we observe are authentic by multiple criteria including the processivity of translation, accuracy of movement (three-nucleotide) along a defined mRNA template and sensitivity to antibiotics. Characterization of the modified ribosomes reveals that the protein content of the ribosomes is not depleted but that their subunit association properties are severely compromised. These data suggest that molecular targets (ribosomal proteins) in the interface region of the ribosome are critical barriers that influence the translocation of the mRNA:tRNA complex.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Reactivos de Sulfhidrilo/farmacología , Ácido p-Cloromercuribenzoico/farmacología , Antibacterianos/farmacología , Sitios de Unión , Cinética , Magnesio/metabolismo , Oligorribonucleótidos/metabolismo , Factor G de Elongación Peptídica/fisiología , Péptidos/metabolismo , Peptidil Transferasas/metabolismo , Unión Proteica , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Puromicina/farmacología , Transporte de ARN , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA