Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20715, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456611

RESUMEN

Synthetic Nitrogen (N) usage in agriculture has greatly increased food supply over the past century. However, the intensive use of N fertilizer is nevertheless the source of numerous environmental issues and remains a major challenge for policymakers to understand, measure, and quantify the interactions and trade-offs between ecosystem carbon and terrestrial biodiversity loss. In this study, we investigate the impacts of a public policy scenario that aims to halve N fertilizer application across European Union (EU) agriculture on both carbon (C) sequestration and biodiversity changes. We quantify the impacts by integrating two economic models with an agricultural land surface model and a terrestrial biodiversity model (that uses data from a range of taxonomic groups, including plants, fungi, vertebrates and invertebrates). Here, we show that the two economic scenarios lead to different outcomes in terms of C sequestration potential and biodiversity. Land abandonment associated with increased fertilizer price scenario facilitates higher C sequestration in soils (+ 1014 MtC) and similar species richness levels (+ 1.9%) at the EU scale. On the other hand, the more extensive crop production scenario is associated with lower C sequestration potential in soils (- 97 MtC) and similar species richness levels (- 0.4%) because of a lower area of grazing land. Our results therefore highlight the complexity of the environmental consequences of a nitrogen reduction policy, which will depend fundamentally on how the economic models used to project consequences.


Asunto(s)
Secuestro de Carbono , Ecosistema , Animales , Nitrógeno , Fertilizantes , Biodiversidad , Suelo , Carbono , Política Pública
2.
Glob Chang Biol ; 27(19): 4671-4685, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089552

RESUMEN

Given the prospects of low short-term emissions reduction, carbon removals (CDRs) are expected to play an important role in achieving ambitious mitigation targets in future scenarios of integrated assessment models (IAMs), particularly Bioenergy with Carbon Capture and Storage (BECCS). In this paper, we explore the IAMC 1.5℃ database to depict the characteristics of the two main CDR options present in mitigation scenarios: BECCS and afforestation/reforestation. We apply a linear mixed-effect model to capture the specific regional and cross-IAM effects. Results reveal that the distribution of BECCS and afforestation deployment differs across IAMs and regions and, to a second extent, time. BECCS is preferred in the scenarios not for its ability to expand energy use but actually because it appears as an alternative to afforestation, which is associated with a decrease in energy use. However, the regional distribution of CDR deployment does not show a common pattern across scenarios and IAMs. Therefore, a more comprehensive investigation is needed before it can support policy proposals.


Asunto(s)
Secuestro de Carbono , Carbono , Biomasa
3.
PLoS One ; 15(12): e0242222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33301462

RESUMEN

Classical land rent theories imply that the best land is cultivated first. This principle forms the basis of many land-use studies, but empirical evidence remains limited, especially on a global scale. In this paper, we estimate the effects of agricultural suitability and market accessibility on the spatial allocation of cultivated areas at a 30 arc-min resolution in 15 world regions. Our results show that both determinants often have a significant positive effect on the cropland fraction, but with large variations in strength across regions. Based on a quantile analysis, we find that agricultural suitability is the dominant driver of cropland allocation in North America, Middle East and North Africa and Eastern Europe, whereas market accessibility shows a stronger effect in other regions, such as Western Africa. In some regions, such as South and Central America, both determinants have a limited effect on cropland fraction. Comparison of high versus low quantile regression coefficients shows that, in most regions, densely cropped areas are more sensitive to agricultural suitability and market accessibility than sparsely cropped areas.


Asunto(s)
Producción de Cultivos/estadística & datos numéricos , Mercadotecnía/estadística & datos numéricos , Análisis Espacial , África del Norte , África Occidental , América Central , Producción de Cultivos/economía , Europa Oriental , Mercadotecnía/economía , Medio Oriente , América del Norte , América del Sur
4.
Clim Change ; 163(3): 1569-1586, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364667

RESUMEN

In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7-50% of bioenergy demand towards 2050, and 2-30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.

5.
PLoS One ; 15(7): e0235597, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32639991

RESUMEN

Facing a growing and more affluent world population, changing climate and finite natural resources, world food systems will have to change in the future. The aim of the Agrimonde-Terra foresight study was to build global scenarios linking land use and food security, with special attention paid to overlooked aspects such as nutrition and health, in order to help explore the possible future of the global food system. In this article, we seek to highlight how the resulting set of scenarios contributes to the debate on land use and food security and enlarges the range of possible futures for the global food system. We highlight four main contributions. Combining a scenario building method based on morphological analysis and quantitative simulations with a tractable and simple biomass balance model, the proposed approach improves transparency and coherence between scenario narratives and quantitative assessment. Agrimonde-Terra's scenarios comprise a wide range of alternative diets, with contrasting underlying nutritional and health issues, which accompany contrasting urbanization and rural transformation processes, both dimensions that are lacking in other sets of global scenarios. Agrimonde-Terra's scenarios share some similarities with existing sets of global scenarios, notably the SSPs, but are usually less optimistic regarding agricultural land expansion up to 2050. Results suggest that changing global diets toward healthier patterns could also help to limit the expansion in agricultural land area. Agrimonde-Terra's scenarios enlarge the scope of possible futures by proposing two pathways that are uncommon in other sets of global scenarios. The first proposes to explore possible reconnection of the food industry and regional production within supranational regional blocs. The second means that we should consider that a 'perfect storm', induced by climate change and an ecological crisis combined with social and economic crises, is still possible. Both scenarios should be part of the debate as the current context of the COVID-19 pandemic shows.


Asunto(s)
Infecciones por Coronavirus/economía , Abastecimiento de Alimentos , Pandemias/economía , Neumonía Viral/economía , Agricultura , COVID-19 , Simulación por Computador , Conservación de los Recursos Naturales , Infecciones por Coronavirus/epidemiología , Dieta , Calidad de los Alimentos , Salud Global , Humanos , Neumonía Viral/epidemiología , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA