Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cancers (Basel) ; 15(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37509285

RESUMEN

Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML.

2.
Cells ; 11(6)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35326511

RESUMEN

Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Embrión de Mamíferos , Células Madre Hematopoyéticas/metabolismo
3.
Front Genet ; 13: 1056114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685855

RESUMEN

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

5.
Sci Transl Med ; 13(596)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078746

RESUMEN

Muscular dystrophies (MDs) are a group of genetic diseases characterized by progressive muscle wasting associated to oxidative stress and persistent inflammation. It is essential to deepen our knowledge on the mechanism connecting these two processes because current treatments for MDs have limited efficacy and/or are associated with side effects. Here, we identified the alarmin high-mobility group box 1 (HMGB1) as a functional link between oxidative stress and inflammation in MDs. The oxidation of HMGB1 cysteines switches its extracellular activities from the orchestration of tissue regeneration to the exacerbation of inflammation. Extracellular HMGB1 is present at high amount and undergoes oxidation in patients with MDs and in mouse models of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy 3 (LGMDR3) compared to controls. Genetic ablation of HMGB1 in muscles of DMD mice leads to an amelioration of the dystrophic phenotype as evidenced by the reduced inflammation and muscle degeneration, indicating that HMGB1 oxidation is a detrimental process in MDs. Pharmacological treatment with an engineered nonoxidizable variant of HMGB1, called 3S, improves functional performance, muscle regeneration, and satellite cell engraftment in dystrophic mice while reducing inflammation and fibrosis. Overall, our data demonstrate that the balance between HMGB1 redox isoforms dictates whether skeletal muscle is in an inflamed or regenerating state, and that the nonoxidizable form of HMGB1 is a possible therapeutic approach to counteract the progression of the dystrophic phenotype. Rebalancing the HMGB1 redox isoforms may also be a therapeutic strategy for other disorders characterized by chronic oxidative stress and inflammation.


Asunto(s)
Proteína HMGB1 , Distrofia Muscular de Duchenne , Animales , Proteína HMGB1/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/metabolismo
6.
Radiology ; 298(1): 49-57, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170101

RESUMEN

Background Few results are available about subsequent outcomes after screening with digital breast tomosynthesis (DBT). Purpose To compare the diagnostic accuracy of a screening round with DBT plus synthetic mammography (SM) (hereafter, DBT+SM) and the repeat screening round with DBT with SM (hereafter, DBT+SM) or full-field digital mammography (FFDM) with FFDM screening. Materials and Methods This prospective study (Verona Pilot Study, clinical trial identification: 2015/1238) included women screened with DBT+SM between April 2015 and March 2017 and rescreened with DBT+SM or FFDM between April 2017 and March 2019. Screening performance (recall rate, cancer detection rate [CDR], and positive predictive value of recall [PPV1]) was compared with that obtained from 28 680 women screened with FFDM between 2013 and 2014 (control group). Cancer stages were compared between modalities and screening rounds. A χ2 test was used to evaluate differences. P < .05 was indicative of a statistically significant difference. Results Of 34 638 women enrolled, 32 870 (median age, 58 years; age range, 52-71 years) underwent repeat screening-16 198 with DBT+SM and 16 672 with FFDM. The CDR was higher for repeat screening with DBT+SM than for the control group with FFDM (8.1 per 1000 women screened vs 4.5 per 1000 women screened, respectively; P < .01) and was not significantly lower for repeat screening with FFDM (3.5 per 1000 women screened vs 4.5 per 1000 women screened, respectively; P = .11). Compared with the control group, there was no difference in the recall rate at repeat screening with both DBT+SM (3.71% vs 3.40%, respectively; P = .10) and FFDM (3.71% vs 3.69%, P = .92), whereas PPV1 was higher only when repeat screening was performed with DBT+SM (23.8% vs 12.0%, P < .01). At repeat screening, the proportion of cancers stage II or higher was 14.5% (19 of 131 cancers) with DBT+SM and 8.5% (five of 59 cancers) with FFDM, both of which were lower than the proportion in the control group with FFDM (30 of 110 cancers, 27.3%) (P ≤ .01). Conclusion At repeat screening, digital breast tomosynthesis plus synthetic mammography depicted more cancers than full-field digital mammography (FFDM) and found a lower number of stage II cancers compared with FFDM. © RSNA, 2020 See also the editorial by Bae in this issue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/métodos , Anciano , Mama/diagnóstico por imagen , Femenino , Humanos , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Reproducibilidad de los Resultados
7.
Biomedicines ; 8(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327623

RESUMEN

Heterotopic ossification is defined as an aberrant formation of bone in extraskeletal soft tissue, for which both genetic and acquired conditions are known. This pathologic process may occur in many different sites such as the skin, subcutaneous tissue, skeletal muscle and fibrous tissue adjacent to joints, ligaments, walls of blood vessels, mesentery and other. The clinical spectrum of this disorder is wide: lesions may range from small foci of ossification to massive deposits of bone throughout the body, typical of the progressive genetically determined conditions such as fibrodysplasia ossificans progressiva, to mention one of the most severe and disabling forms. The ectopic bone formation may be regarded as a failed tissue repair process in response to a variety of triggers and evolving towards bone formation through a multistage differentiation program, with several steps common to different clinical presentations and distinctive features. In this review, we aim at providing a comprehensive view of the genetic and acquired heterotopic ossification disorders by detailing the clinical and molecular features underlying the different human conditions in comparison with the corresponding, currently available mouse models.

8.
EMBO Rep ; 21(4): e49075, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32107853

RESUMEN

Macrophages are characterized by a high plasticity in response to changes in tissue microenvironment, which allows them to acquire different phenotypes and to exert essential functions in complex processes, such as tissue regeneration. Here, we report that the membrane protein Cripto plays a key role in shaping macrophage plasticity in skeletal muscle during regeneration and disease. Conditional deletion of Cripto in the myeloid lineage (CriptoMy-LOF ) perturbs MP plasticity in acutely injured muscle and in mouse models of Duchenne muscular dystrophy (mdx). Specifically, CriptoMy-LOF macrophages infiltrate the muscle, but fail to properly expand as anti-inflammatory CD206+ macrophages, which is due, at least in part, to aberrant activation of TGFß/Smad signaling. This reduction in macrophage plasticity disturbs vascular remodeling by increasing Endothelial-to-Mesenchymal Transition (EndMT), reduces muscle regenerative potential, and leads to an exacerbation of the dystrophic phenotype. Thus, in muscle-infiltrating macrophages, Cripto is required to promote the expansion of the CD206+ anti-inflammatory macrophage type and to restrict the EndMT process, providing a direct functional link between this macrophage population and endothelial cells.


Asunto(s)
Células Endoteliales , Distrofia Muscular de Duchenne , Animales , Macrófagos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético
9.
Front Cell Dev Biol ; 8: 618164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511126

RESUMEN

Several lines of evidence suggest that childhood leukemia, the most common cancer in young age, originates during in utero development. However, our knowledge of the cellular origin of this large and heterogeneous group of malignancies is still incomplete. The identification and characterization of their cell of origin is of crucial importance in order to define the processes that initiate and sustain disease progression, to refine faithful animal models and to identify novel therapeutic approaches. During embryogenesis, hematopoiesis takes place at different anatomical sites in sequential waves, and occurs in both a hematopoietic stem cell (HSC)-dependent and a HSC-independent fashion. Despite the recently described relevance and complexity of HSC-independent hematopoiesis, few studies have so far investigated its potential involvement in leukemogenesis. Here, we review the current knowledge on prenatal origin of leukemias in the context of recent insights in developmental hematopoiesis.

10.
Front Immunol ; 10: 1640, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396210

RESUMEN

Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.


Asunto(s)
Condrogénesis , Células Endoteliales/fisiología , Macrófagos/inmunología , Monocitos/inmunología , Músculo Esquelético/patología , Osificación Heterotópica/inmunología , Animales , Ratones Transgénicos , Músculo Esquelético/fisiología
11.
J Immunol ; 203(1): 247-258, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127033

RESUMEN

The signals that control endothelial plasticity in inflamed tissues have only been partially characterized. For example, it has been shown that inadequate vasculogenesis in systemic sclerosis (SSc) has been associated with an endothelial defect. We used a genetic lineage tracing model to investigate whether endothelial cells die or change phenotypically after fibrosis induction and whether signals released by cells of the innate immune system and in the blood of patients influence their commitment. We observed that in the lineage-tracing transgenic mice Cdh5-CreERT2::R26R-EYFP, endothelial-derived cells (EdCs) underwent fibrosis after treatment with bleomycin, and EdCs retrieved from the lung showed expression of endothelial-to-mesenchymal transition (EndoMT) markers. Liposome-encapsulated clodronate was used to assess macrophage impact on EdCs. Clodronate treatment affected the number of alternatively activated macrophages in the lung, with upregulated expression of EndoMT markers in lung EdCs. Endothelial fate and function were investigated in vitro upon challenge with serum signals from SSc patients or released by activated macrophages. Sera of SSc patients with anti-Scl70 Abs, at higher risk of visceral organ fibrosis, induced EndoMT and jeopardized endothelial function. In conclusion, EdCs in SSc might be defective because of commitment to a mesenchymal fate, which is sustained by soluble signals in the patient's blood. Macrophages contribute to preserve the endothelial identity of precursor cells. Altered macrophage-dependent plasticity of EdCs could contribute to link vasculopathy with fibrosis.


Asunto(s)
Endotelio/fisiología , Inflamación/inmunología , Pulmón/patología , Macrófagos/fisiología , Células Madre Mesenquimatosas/fisiología , Esclerodermia Sistémica/inmunología , Animales , Autoanticuerpos/metabolismo , Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Células Cultivadas , Ácido Clodrónico , ADN-Topoisomerasas de Tipo I , Fibrosis , Humanos , Inmunidad Innata , Ratones , Ratones Transgénicos , Neovascularización Patológica , Proteínas Nucleares/inmunología
12.
Breast Cancer Res Treat ; 170(2): 391-397, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29557996

RESUMEN

BACKGROUND: The Verona population-based breast cancer (BC) screening program provides biennial mammography to women aged 50-69 years. Based on emerging evidence of enhanced detection, the program transitioned to digital breast tomosynthesis (DBT) screening. METHODS: This is a prospective pilot evaluation of DBT with synthesised 2D mammography screening implemented during April 2015-March 2017; the rate and characteristics of cancers detected at DBT screening were compared with those detected at the preceding digital mammography (DM) screening round (April 2013-March 2015) in the same screening program. Distribution of imaging and tumour characteristics were compared. RESULTS: Amongst 34,071 women screened in the Verona DBT pilot, 315 BCs were detected; 153 BCs were detected amongst 29,360 women in the DM screening round. Estimated CDRs were 9.2/1000 (95% CI 8.3-10.3) DBT screens versus 5.2/1000 (95% CI 4.4-6.1) DM screens, P < 0.001. Statistically significant differences were found in the distribution of whether recall by one/both screen readers (more BCs recalled by both readers at DBT than DM); whether detected on one/two views (higher proportion detected on only one view at DBT than DM); type of radiological lesions; tumour stage, pT and histological categories (lower proportion of DCIS/pTis, higher proportions of pT1a and pT1b, and higher proportion of invasive cancers of special types, at DBT than DM); and tumour grade (higher proportion of grade I at DBT than DM). There were no differences in distributions of nodal and hormone receptor (ER/PR) status. CONCLUSIONS: Our findings provide early insights into the extent that transitioning to DBT screening may modify the characteristics of screen-detected breast cancer to inform discussion regarding pros and cons of DBT screening; although our data provide some reassurance that DBT does not increase the proportion of screen-detected DCIS, they highlight mixed findings on comparative tumour characteristics, suggesting a potential for enhancing screening benefit and possibly also over-diagnosis from DBT screening.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Detección Precoz del Cáncer , Mamografía , Anciano , Neoplasias de la Mama/mortalidad , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Mamografía/métodos , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Vigilancia de la Población , Pronóstico
13.
Breast ; 38: 150-153, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29328943

RESUMEN

BACKGROUND & METHODS: The prospective 'screening with tomosynthesis or standard mammography' (STORM) trial recruited women participating in biennial breast screening in Italy (2011-2012), and compared sequential screen-readings based on 2D-mammography alone or based on tomosynthesis (integrated 2D/3D-mammography). The STORM trial showed that tomosynthesis screen-reading significantly increased breast cancer detection compared to 2D-mammography alone. The present study completes reporting of the trial by examining interval breast cancers ascertained at two year follow-up. RESULTS: 9 interval breast cancers were identified; the estimated interval cancer rate was 1.23/1000 screens [9/7292] (95%CI 0.56 to 2.34) or 1.24/1000 negative screens [9/7235] (95%CI 0.57 to 2.36). In concurrently screened women who attended the same screening services and received 2D-mammography, interval cancer rate was 1.60/1000 screens [40/25,058] (95% CI 1.14 to 2.17) or 1.61/1000 negative screens [40/24,922] (95% CI 1.15 to 2.18). Estimated screening sensitivity for the STORM trial was 85.5% [59/69] (95%CI 75.0%-92.8%), and that for 2D-mammography screening was 77.3% [136/176] (95%CI 70.4%-83.2%). CONCLUSION: Interval breast cancer rate amongst screening participants in the STORM trial was marginally lower (and screening sensitivity higher) than estimates amongst 2D-screened women; these findings should be interpreted with caution given the small number of interval cases and the sample size of the trial. Much larger screening studies, or pooled analyses, are required to examine interval cancer rates arising after breast tomosynthesis screening versus digital mammography screening.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Detección Precoz del Cáncer/estadística & datos numéricos , Imagenología Tridimensional/estadística & datos numéricos , Mamografía/estadística & datos numéricos , Tamizaje Masivo/estadística & datos numéricos , Anciano , Neoplasias de la Mama/epidemiología , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Imagenología Tridimensional/métodos , Italia/epidemiología , Mamografía/métodos , Tamizaje Masivo/métodos , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y Especificidad , Factores de Tiempo
14.
Radiology ; 287(1): 37-46, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29237146

RESUMEN

Purpose To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography compared with those after full-field digital mammography (FFDM). Materials and Methods This prospective study included 16 666 asymptomatic women aged 50-69 years who were recruited in April 2015 through March 2016 for DBT plus synthetic 2D screening in the Verona screening program. A comparison cohort of women screened with FFDM (n = 14 423) in the previous year was included. Screening detection measures for the two groups were compared by calculating the proportions associated with each outcome, and the relative rates (RRs) were estimated with multivariate logistic regression. Results Cancer detection rate (CDR) for DBT plus synthetic 2D imaging was 9.30 per 1000 screening examinations versus 5.41 per 1000 screening examinations with FFDM (RR, 1.72; 95% confidence interval [CI]: 1.30, 2.29). CDR was significantly higher in patients screened with DBT plus synthetic 2D imaging than in those screened with FFDM among women classified as having low breast density (RR, 1.53; 95% CI: 1.13, 2.10) or high breast density (RR, 2.86; 95% CI: 1.42, 6.25). The positive predictive value (PPV) for recall was almost doubled with DBT plus synthetic 2D imaging: 23.3% versus 12.9% of recalled patients who were screened with FFDM (RR, 1.81; 95% CI: 1.34, 2.47). The recall rate was similar between groups (RR, 0.95; 95% CI: 0.84, 1.06), whereas the recall rate with invasive assessment was higher for DBT plus synthetic 2D imaging than for FFDM (RR, 1.93; 95% CI: 1.31, 2.03). The mean number of screening studies interpreted per hour was significantly lower for screening examinations performed with DBT plus synthetic 2D imaging (38.5 screens per hour) than with FFDM (60 screens per hour) (P < .001). Conclusion DBT plus synthetic 2D imaging increases CDRs with recall rates comparable to those of FFDM. DBT plus synthetic 2D imaging increased image reading time and the time needed for invasive assessments. © RSNA, 2017.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/métodos , Tamizaje Masivo/métodos , Anciano , Mama/diagnóstico por imagen , Femenino , Humanos , Italia , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados
15.
J Exp Med ; 215(1): 303-318, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29203538

RESUMEN

Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine. Here we report that fully reduced HMGB1 orchestrates muscle and liver regeneration via CXCR4, whereas disulfide HMGB1 and its receptors TLR4/MD-2 and RAGE (receptor for advanced glycation end products) are not involved. Injection of HMGB1 accelerates tissue repair by acting on resident muscle stem cells, hepatocytes, and infiltrating cells. The nonoxidizable HMGB1 mutant 3S, in which serines replace cysteines, promotes muscle and liver regeneration more efficiently than the wild-type protein and without exacerbating inflammation by selectively interacting with CXCR4. Overall, our results show that the reduced form of HMGB1 coordinates tissue regeneration and suggest that 3S may be used to safely accelerate healing after injury in diverse clinical contexts.


Asunto(s)
Proteína HMGB1/metabolismo , Regeneración Hepática/fisiología , Músculos/metabolismo , Músculos/fisiología , Receptores CXCR4/metabolismo , Animales , Línea Celular , Factores Quimiotácticos/metabolismo , Citocinas/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Hepatocitos/fisiología , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Cicatrización de Heridas/fisiología
16.
J Vis Exp ; (119)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28117768

RESUMEN

Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.


Asunto(s)
Cardiotoxinas/administración & dosificación , Inyecciones Intramusculares , Músculo Esquelético/fisiología , Regeneración/efectos de los fármacos , Animales , Ratones , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular
17.
PLoS One ; 11(10): e0164893, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760216

RESUMEN

Embryonic VE-Cadherin-expressing progenitors (eVE-Cad+), including hemogenic endothelium, have been shown to generate hematopoietic stem cells and a variety of other progenitors, including mesoangioblasts, or MABs. MABs are vessel-associated progenitors with multilineage mesodermal differentiation potential that can physiologically contribute to skeletal muscle development and regeneration, and have been used in an ex vivo cell therapy setting for the treatment of muscular dystrophy. There is currently a therapeutic need for molecules that could improve the efficacy of cell therapy protocols; one such good candidate is nitric oxide. Several studies in animal models of muscle dystrophy have demonstrated that nitric oxide donors provide several beneficial effects, including modulation of the activity of endogenous cell populations involved in muscle repair and the delay of muscle degeneration. Here we used a genetic lineage tracing approach to investigate whether the therapeutic effect of nitric oxide in muscle repair could derive from an improvement in the myogenic differentiation of eVE-Cad+ progenitors during embryogenesis. We show that early in vivo treatment with the nitric oxide donor molsidomine enhances eVE-Cad+ contribution to embryonic and fetal myogenesis, and that this effect could originate from a modulation of the properties of yolk sac hemogenic endothelium.


Asunto(s)
Hemangioblastos/citología , Molsidomina/administración & dosificación , Desarrollo de Músculos/efectos de los fármacos , Donantes de Óxido Nítrico/administración & dosificación , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Hemangioblastos/efectos de los fármacos , Hemangioblastos/metabolismo , Ratones , Molsidomina/farmacología , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/patología , Donantes de Óxido Nítrico/farmacología
20.
Stem Cells Int ; 2016: 4636859, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069480

RESUMEN

Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc). The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...