Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 99(6): 585-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26850686

RESUMEN

Trillions of bacteria inhabit our intestine, forming a community called the microbiota, whose contributions are essential to maintain host homeostasis. Disruption of this normal microbial-host communication network has deleterious consequences for the host and is associated with intestinal pathologies such as inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Here we present key concepts and mechanisms by which bacteria may participate in intestinal pathology, and discuss possible means to therapeutically target the microbiome.


Asunto(s)
Bacterias/metabolismo , Carcinogénesis , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/microbiología , Neoplasias Colorrectales/etiología , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Microbiota
3.
J Biol Chem ; 275(47): 36506-8, 2000 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-11084051

RESUMEN

Cytosine deamination and the misincorporation of 2'-dUrd into DNA during replication result in the presence of uracil in DNA. Uracil-DNA glycosylases (UDGs) initiate the excision repair of this aberrant base by catalyzing the hydrolysis of the N-glycosidic bond. UDGs are expressed by nearly all known organisms, including some viruses, in which the functional role of the UDG protein remains unresolved. This issue could in principle be addressed by the availability of designed synthetic inhibitors that target the viral UDG without affecting the endogenous human UDG. Here, we report that double-stranded and single-stranded oligonucleotides incorporating either of two dUrd analogs tightly bind and inhibit the activity of herpes simplex virus type-1 (HSV-1) UDG. Both inhibitors are exquisitely specific for the HSV-1 UDG over the human UDG. These inhibitors should prove useful in structural studies aimed at understanding substrate recognition and catalysis by UDGs, as well as in elucidating the biologic role of UDGs in the life cycle of herpesviruses.


Asunto(s)
ADN Glicosilasas , Inhibidores Enzimáticos/síntesis química , Floxuridina/química , Furanos/química , Herpesvirus Humano 1/enzimología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Inhibidores Enzimáticos/farmacología , Humanos , Isomerismo , Modelos Químicos , Imitación Molecular , Datos de Secuencia Molecular , Uracil-ADN Glicosidasa
4.
Nature ; 403(6772): 859-66, 2000 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-10706276

RESUMEN

Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.


Asunto(s)
Reparación del ADN , ADN/química , Proteínas de Escherichia coli , Guanina/análogos & derivados , Mutágenos/química , N-Glicosil Hidrolasas/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Citosina/química , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa , Escherichia coli , Guanina/química , Guanina/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutágenos/metabolismo , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Relación Estructura-Actividad
6.
Curr Biol ; 8(7): 393-403, 1998 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-9545197

RESUMEN

BACKGROUND: Transversion mutations are caused by 8-oxoguanine (OG), a DNA lesion produced by the spontaneous oxidation of guanine nucleotides, which mis-pairs with adenine during replication. Resistance to this mutagenic threat is mediated by the GO system, the components of which are functionally conserved in bacteria and mammals. To date, only one of three GO system components has been identified in the budding yeast Saccharomyces cerevisiae, namely the OG:C-specific glycosylase/lyase yOgg1. Furthermore, S. cerevisiae has been reported to contain a unique glycosylase/lyase activity, yOgg2, which excises OG residues opposite adenines. Paradoxically, according to the currently accepted model, yOgg2 activity should increase the mutagenicity of OG lesions. Here we report the isolation of yOgg2 and the elucidation of its role in oxidative mutagenesis. RESULTS: Borohydride-dependent cross-linking using an OG-containing oligonucleotide substrate led to the isolation of yOgg1 and a second protein, Ntg1, which had previously been shown to process oxidized pyrimidines in DNA. We demonstrate that Ntg1 has OG-specific glycosylase/lyase activity indistinguishable from that of yOgg2. Targeted disruption of the NTG1 gene resulted in complete loss of yOgg2 activity and yeast lacking NTG1 had an elevated rate of A:T to C:G transversions. CONCLUSIONS: The Ntg1 and yOgg2 activities are encoded by a single gene. We propose that yOgg2 has evolved to process OG:A mis-pairs that have arisen through mis-incorporation of 8-oxo-dGTP during replication. Thus, the GO system in S. cerevisiae is fundamentally distinct from that in bacteria and mammals.


Asunto(s)
Reparación del ADN , Guanina/análogos & derivados , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Marcadores de Afinidad , Secuencia de Aminoácidos , Secuencia de Bases , Borohidruros , Cartilla de ADN/genética , Reparación del ADN/genética , ADN de Hongos/química , ADN de Hongos/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN-Formamidopirimidina Glicosilasa , Marcación de Gen , Genes Fúngicos , Guanina/química , Guanina/metabolismo , Datos de Secuencia Molecular , Mutagénesis , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/aislamiento & purificación , N-Glicosil Hidrolasas/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Chem Biol ; 4(5): 329-34, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9195879

RESUMEN

The genome is susceptible to the attack of reactive species that chemically modify the bases of DNA. If genetic information is to be transmitted faithfully to successive generations, it is essential that the genome be repaired. All organisms express proteins specifically dedicated to this task. But how do these proteins find the aberrant bases amongst the enormous number of normal ones?


Asunto(s)
Reparación del ADN , N-Glicosil Hidrolasas/metabolismo , Animales , ADN Glicosilasas , Humanos , Proteínas/metabolismo , Especificidad por Sustrato
8.
Curr Biol ; 6(8): 968-80, 1996 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-8805338

RESUMEN

BACKGROUND: Reactive oxygen species, ionizing radiation, and other free radical generators initiate the conversion of guanine (G) residues in DNA to 8-oxoguanine (OG), which is highly mutagenic as it preferentially mispairs with adenine (A) during replication. Bacteria counter this threat with a multicomponent system that excises the lesion, corrects OG:A mispairs and cleanses the nucleotide precursor pool of dOGTP. Although biochemical evidence has suggested the existence of base-excision DNA repair proteins specific for OG in eukaryotes, little is known about these proteins. RESULTS: Using substrate-mimetic affinity chromatography followed by a mechanism-based covalent trapping procedure, we have isolated a base-excision DNA repair protein from Saccharomyces cerevisiae that processes OG opposite cytosine (OG:C) but acts only weakly on OG:A. A search of the yeast genome database using peptide sequences from the protein identified a gene, OGG1, encoding a predicted 43 kDa (376 amino acid) protein, identical to one identified independently by complementation cloning. Ogg1 has OG:C-specific base-excision DNA repair activity and also intrinsic beta-lyase activity, which proceeds through a Schiff base intermediate. Targeted disruption of the OGG1 gene in yeast revealed a second OG glycosylase/lyase protein, tentatively named Ogg2, which differs from Ogg1 in that it preferentially acts on OG:G. CONCLUSIONS: S. cerevisiae has two OG-specific glycosylase/lyases, which differ significantly in their preference for the base opposite the lesion. We suggest that one of these, Ogg1, is closely related in overall three-dimensional structure to Escherichia coli endonuclease III (endo III), a glycosylase/lyase that acts on fragmented and oxidatively damaged pyrimidines. We have recently shown that AlkA, a monofunctional DNA glycosylase that acts on alkylated bases, is structurally homologous to endo III. We have now identified a shared active site motif amongst these three proteins. Using this motif as a protein database searching tool, we find that it is present in a number of other base-excision DNA repair proteins that process diverse lesions. Thus, we propose the existence of a DNA glycosylase superfamily, members of which possess a common fold yet act upon remarkably diverse lesions, ranging from UV photoadducts to mismatches to alkylated or oxidized bases.


Asunto(s)
Reparación del ADN/genética , Proteínas de Escherichia coli , N-Glicosil Hidrolasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN-Formamidopirimidina Glicosilasa , Datos de Secuencia Molecular , Familia de Multigenes , N-Glicosil Hidrolasas/aislamiento & purificación , N-Glicosil Hidrolasas/metabolismo , Oligodesoxirribonucleótidos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...