Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 103(2): 449-456, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12231953

RESUMEN

The binding of [2,3,4,5,(n)-3H]N-1-napthylphthalamicacid ([3H]-NPA) to zucchini (Cucurbita pepo L.) plasma membranes was examined in detail using two different filtration assays and the results were rigorously analyzed by saturation curves, double-reciprocal plots, Scatchard plots, Hill plots, and the computer program Ligand (P.J. Munson, D. Rodbard [1980] Anal Biochem 107: 220-239). To facilitate these analyses, a new assay that allows rapid and quantitative analysis of [3H]NPA binding with high reproducibility and ease of manipulation has been developed. These detailed kinetic analyses indicate that only one binding site for [3H]NPA (Kd = 16 nM) was associated with the zucchini plasma membrane. Analysis of [3H]NPA dissociation by several auxin transport inhibitors revealed similar dissociation constants with both plasma and microsomal membrane. Collectively, these data indicate the presence of only one binding site for NPA associated with the zucchini plasma membrane.

2.
Plant Physiol ; 98(1): 101-7, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16668598

RESUMEN

We have described the inhibition of polar auxin transport by several phytotropins including 1-N-naphthylphthalamic acid (NPA) and quercetin. Semicarbazones (substituted phenylsemicarbazones of 2-acetylarylcarboxylic acids) are inhibitors consistent with previously predicted general structural requirements for auxin transport inhibitors. The best semicarbazone derivative tested to date, hereafter called SCB-I, binds to the NPA binding protein with high affinity, K(b) = 4 nanomolar. Quantification of the binding of various phytotropins allows us to make some general statements concerning the structure/properties of the NPA binding protein. The data suggest that the ligand binding region of this protein is multifaceted, a conclusion supported by the chemical predictions of Katekar and Geissler ([1977] Plant Physiol 60: 826-829). Although the data do not allow us to make specific conclusions on the structure of the binding site, they do show that both NPA and SCB-I could each occupy two regions of the protein. At least one of these binding regions appears to be common for both inhibitors of auxin transport. We suggest that the diversity of the binding site structure reflects the possible existence of more than one type of natural ligand controlling the process of auxin transport.

3.
Biochem Biophys Res Commun ; 133(2): 527-31, 1985 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-2867765

RESUMEN

Titration of cysteine residues of spinach glutamine synthetase with 5-5' dithiobis (2-nitrobenzoic acid) indicates that there are five such residues per monomer of enzyme and that two of these five are on the surface of the molecule. The presence of substrates, or either of the competitive inhibitors methionine sulfoximine or phosphinothricin, completely protects both of the surface sulfhydryls from titration. This suggests that both are located at the active site. In the absence of Mg2+ and ATP, both surface sulfhydryls must be modified before loss of activity. We conclude that while both of the cysteine residues are located at the active site, only one of them may be involved in catalysis. Because the cysteine residue which is implicated in catalysis can be protected by Mg2+ and ATP, we believe that it may be located at or near the binding site of these ligands.


Asunto(s)
Cisteína/análisis , Glutamato-Amoníaco Ligasa/metabolismo , Plantas/enzimología , Sitios de Unión , Catálisis , Fenómenos Químicos , Química , Cloroplastos/enzimología , Ácido Ditionitrobenzoico , Compuestos de Sulfhidrilo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...