Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 598(7881): 473-478, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646017

RESUMEN

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Asunto(s)
Hepatopatías/genética , Hepatopatías/metabolismo , Hígado/metabolismo , Mutación/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Enfermedad Crónica , Estudios de Cohortes , Ácidos Grasos no Esterificados/metabolismo , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Resistencia a la Insulina , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
4.
Nat Protoc ; 16(2): 841-871, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33318691

RESUMEN

Somatic mutations accumulate in healthy tissues as we age, giving rise to cancer and potentially contributing to ageing. To study somatic mutations in non-neoplastic tissues, we developed a series of protocols to sequence the genomes of small populations of cells isolated from histological sections. Here, we describe a complete workflow that combines laser-capture microdissection (LCM) with low-input genome sequencing, while circumventing the use of whole-genome amplification (WGA). The protocol is subdivided broadly into four steps: tissue processing, LCM, low-input library generation and mutation calling and filtering. The tissue processing and LCM steps are provided as general guidelines that might require tailoring based on the specific requirements of the study at hand. Our protocol for low-input library generation uses enzymatic rather than acoustic fragmentation to generate WGA-free whole-genome libraries. Finally, the mutation calling and filtering strategy has been adapted from previously published protocols to account for artifacts introduced via library creation. To date, we have used this workflow to perform targeted and whole-genome sequencing of small populations of cells (typically 100-1,000 cells) in thousands of microbiopsies from a wide range of human tissues. The low-input DNA protocol is designed to be compatible with liquid handling platforms and make use of equipment and expertise standard to any core sequencing facility. However, obtaining low-input DNA material via LCM requires specialized equipment and expertise. The entire protocol from tissue reception through whole-genome library generation can be accomplished in as little as 1 week, although 2-3 weeks would be a more typical turnaround time.


Asunto(s)
Captura por Microdisección con Láser/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , ADN/genética , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Flujo de Trabajo
5.
Nature ; 591(7848): 137-141, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33361815

RESUMEN

Focal chromosomal amplification contributes to the initiation of cancer by mediating overexpression of oncogenes1-3, and to the development of cancer therapy resistance by increasing the expression of genes whose action diminishes the efficacy of anti-cancer drugs. Here we used whole-genome sequencing of clonal cell isolates that developed chemotherapeutic resistance to show that chromothripsis is a major driver of circular extrachromosomal DNA (ecDNA) amplification (also known as double minutes) through mechanisms that depend on poly(ADP-ribose) polymerases (PARP) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). Longitudinal analyses revealed that a further increase in drug tolerance is achieved by structural evolution of ecDNAs through additional rounds of chromothripsis. In situ Hi-C sequencing showed that ecDNAs preferentially tether near chromosome ends, where they re-integrate when DNA damage is present. Intrachromosomal amplifications that formed initially under low-level drug selection underwent continuing breakage-fusion-bridge cycles, generating amplicons more than 100 megabases in length that became trapped within interphase bridges and then shattered, thereby producing micronuclei whose encapsulated ecDNAs are substrates for chromothripsis. We identified similar genome rearrangement profiles linked to localized gene amplification in human cancers with acquired drug resistance or oncogene amplifications. We propose that chromothripsis is a primary mechanism that accelerates genomic DNA rearrangement and amplification into ecDNA and enables rapid acquisition of tolerance to altered growth conditions.


Asunto(s)
Cromotripsis , Evolución Molecular , Amplificación de Genes/genética , Neoplasias/genética , Oncogenes/genética , Daño del ADN , Reparación del ADN por Unión de Extremidades , ADN Circular/química , ADN Circular/metabolismo , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Proteína Quinasa Activada por ADN , Resistencia a Antineoplásicos , Células HEK293 , Células HeLa , Humanos , Micronúcleos con Defecto Cromosómico , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Selección Genética , Secuenciación Completa del Genoma
6.
Nature ; 580(7805): 640-646, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350471

RESUMEN

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Asunto(s)
Análisis Mutacional de ADN , Endometrio/citología , Endometrio/metabolismo , Epitelio/metabolismo , Salud , Mutación , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Carcinogénesis/genética , Células Clonales/citología , Neoplasias Endometriales/genética , Endometrio/patología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Paridad/genética , Factores de Tiempo , Adulto Joven
7.
Nature ; 574(7779): 538-542, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645727

RESUMEN

The most common causes of chronic liver disease are excess alcohol intake, viral hepatitis and non-alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic inflammation to cirrhosis, liver failure or hepatocellular carcinoma (HCC). The genome of HCC exhibits diverse mutational signatures, resulting in recurrent mutations across more than 30 cancer genes1-7. Stem cells from normal livers have a low mutational burden and limited diversity of signatures8, which suggests that the complexity of HCC arises during the progression to chronic liver disease and subsequent malignant transformation. Here, by sequencing whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers, we show that cirrhotic liver has a higher mutational burden than normal liver. Although rare in normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. Driver mutations, such as point mutations and structural variants, affected 1-5% of clones. Clonal expansions of millimetres in diameter occurred in cirrhosis, with clones sequestered by the bands of fibrosis that surround regenerative nodules. Some mutational signatures were universal and equally active in both non-malignant hepatocytes and HCCs; some were substantially more active in HCCs than chronic liver disease; and others-arising from exogenous exposures-were present in a subset of patients. The activity of exogenous signatures between adjacent cirrhotic nodules varied by up to tenfold within each patient, as a result of clone-specific and microenvironmental forces. Synchronous HCCs exhibited the same mutational signatures as background cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, regeneration and clonal structure of liver tissue as it progresses from health to disease.


Asunto(s)
Células Clonales/citología , Células Clonales/patología , Fibrosis/genética , Fibrosis/patología , Hígado/citología , Hígado/metabolismo , Mutación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Filogenia , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología
8.
Nat Genet ; 51(4): 705-715, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833795

RESUMEN

Cancer genomes are frequently characterized by numerical and structural chromosomal abnormalities. Here we integrated a centromere-specific inactivation approach with selection for a conditionally essential gene, a strategy termed CEN-SELECT, to systematically interrogate the structural landscape of mis-segregated chromosomes. We show that single-chromosome mis-segregation into a micronucleus can directly trigger a broad spectrum of genomic rearrangement types. Cytogenetic profiling revealed that mis-segregated chromosomes exhibit 120-fold-higher susceptibility to developing seven major categories of structural aberrations, including translocations, insertions, deletions, and complex reassembly through chromothripsis coupled to classical non-homologous end joining. Whole-genome sequencing of clonally propagated rearrangements identified random patterns of clustered breakpoints with copy-number alterations resulting in interspersed gene deletions and extrachromosomal DNA amplification events. We conclude that individual chromosome segregation errors during mitotic cell division are sufficient to drive extensive structural variations that recapitulate genomic features commonly associated with human disease.


Asunto(s)
Segregación Cromosómica/genética , Reordenamiento Génico/genética , Animales , Células Cultivadas , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Genómica/métodos , Células HEK293 , Humanos , Neoplasias/genética , Translocación Genética/genética , Secuenciación Completa del Genoma/métodos , Xenopus laevis/genética
9.
Nat Methods ; 14(7): 729-736, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28553966

RESUMEN

The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to biosynthesize defined phosphoproteins. Here we describe a rapid approach for directly discovering aminoacyl-tRNA synthetase-tRNA pairs that selectively incorporate non-natural amino acids into proteins; our method uses parallel positive selections combined with deep sequencing and statistical analysis and enables the direct, scalable discovery of aminoacyl-tRNA synthetase-tRNA pairs with mutually orthogonal substrate specificity. By combining a method to biosynthesize phosphothreonine in cells with this selection approach, we discover a phosphothreonyl-tRNA synthetase-tRNACUA pair and create an entirely biosynthetic route to incorporating phosphothreonine in proteins. We biosynthesize several phosphoproteins and demonstrate phosphoprotein structure determination and synthetic protein kinase activation.


Asunto(s)
Escherichia coli/metabolismo , Fosfotreonina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Ingeniería Genética , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Salmonella enterica/metabolismo , Especificidad por Sustrato
10.
Mol Syst Biol ; 13(1): 903, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049137

RESUMEN

Transcription networks consist of hundreds of transcription factors with thousands of often overlapping target genes. While we can reliably measure gene expression changes, we still understand relatively little why expression changes the way it does. How does a coordinated response emerge in such complex networks and how many input signals are necessary to achieve it? Here, we unravel the regulatory program of gene expression in Escherichia coli central carbon metabolism with more than 30 known transcription factors. Using a library of fluorescent transcriptional reporters, we comprehensively quantify the activity of central metabolic promoters in 26 environmental conditions. The expression patterns were dominated by growth rate-dependent global regulation for most central metabolic promoters in concert with highly condition-specific activation for only few promoters. Using an approximate mathematical description of promoter activity, we dissect the contribution of global and specific transcriptional regulation. About 70% of the total variance in promoter activity across conditions was explained by global transcriptional regulation. Correlating the remaining specific transcriptional regulation of each promoter with the cell's metabolome response across the same conditions identified potential regulatory metabolites. Remarkably, cyclic AMP, fructose-1,6-bisphosphate, and fructose-1-phosphate alone explained most of the specific transcriptional regulation through their interaction with the two major transcription factors Crp and Cra. Thus, a surprisingly simple regulatory program that relies on global transcriptional regulation and input from few intracellular metabolites appears to be sufficient to coordinate E. coli central metabolism and explain about 90% of the experimentally observed transcription changes in 100 genes.


Asunto(s)
Escherichia coli/genética , Genes Bacterianos , Redes y Vías Metabólicas , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Genes Reporteros , Metaboloma , Modelos Teóricos , Regiones Promotoras Genéticas
11.
Nature ; 539(7627): 59-64, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27776354

RESUMEN

Synthetic recoding of genomes, to remove targeted sense codons, may facilitate the encoded cellular synthesis of unnatural polymers by orthogonal translation systems. However, our limited understanding of allowed synonymous codon substitutions, and the absence of methods that enable the stepwise replacement of the Escherichia coli genome with long synthetic DNA and provide feedback on allowed and disallowed design features in synthetic genomes, have restricted progress towards this goal. Here we endow E. coli with a system for efficient, programmable replacement of genomic DNA with long (>100-kb) synthetic DNA, through the in vivo excision of double-stranded DNA from an episomal replicon by CRISPR/Cas9, coupled to lambda-red-mediated recombination and simultaneous positive and negative selection. We iterate the approach, providing a basis for stepwise whole-genome replacement. We attempt systematic recoding in an essential operon using eight synonymous recoding schemes. Each scheme systematically replaces target codons with defined synonyms and is compatible with codon reassignment. Our results define allowed and disallowed synonymous recoding schemes, and enable the identification and repair of recoding at idiosyncratic positions in the genome.


Asunto(s)
Codón/genética , Escherichia coli/genética , Código Genético/genética , Ingeniería Genética/métodos , Genoma Bacteriano/genética , Biología Sintética/métodos , Sistemas CRISPR-Cas/genética , ADN/biosíntesis , ADN/genética , Genes Bacterianos/genética , Genes Esenciales/genética , Operón/genética , Plásmidos/genética , Selección Genética
12.
Metab Eng ; 30: 1-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25887638

RESUMEN

Here we report recombinant expression and activity of several type I fatty acid synthases that can function in parallel with the native Escherichia coli fatty acid synthase. Corynebacterium glutamicum FAS1A was the most active in E. coli and this fatty acid synthase was leveraged to produce oleochemicals including fatty alcohols and methyl ketones. Coexpression of FAS1A with the ACP/CoA-reductase Maqu2220 from Marinobacter aquaeolei shifted the chain length distribution of fatty alcohols produced. Coexpression of FAS1A with FadM, FadB, and an acyl-CoA-oxidase from Micrococcus luteus resulted in the production of methyl ketones, although at a lower level than cells using the native FAS. This work, to our knowledge, is the first example of in vivo function of a heterologous fatty acid synthase in E. coli. Using FAS1 enzymes for oleochemical production have several potential advantages, and further optimization of this system could lead to strains with more efficient conversion to desired products. Finally, functional expression of these large enzyme complexes in E. coli will enable their study without culturing the native organisms.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Corynebacterium glutamicum/genética , Escherichia coli/metabolismo , Ácido Graso Sintasas/biosíntesis , Ácidos Grasos/biosíntesis , Marinobacter/genética , Micrococcus luteus/genética , Proteínas Bacterianas/genética , Corynebacterium glutamicum/enzimología , Escherichia coli/genética , Ácido Graso Sintasas/genética , Ácidos Grasos/genética , Marinobacter/enzimología , Micrococcus luteus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...