Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 617, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778159

RESUMEN

The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.


Asunto(s)
Adhesión Celular , Elasticidad , Neuronas , Neuronas/fisiología , Animales , Dimetilpolisiloxanos/química , Propiedades de Superficie , Módulo de Elasticidad , Células Cultivadas , Ratas
2.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257686

RESUMEN

Digital twins are considered the next step in IoT-based cyber-physical systems; they allow for the real-time monitoring of assets, and they provide a comprehensive understanding of a system behavior, allowing for data-driven insights and informed choices. However, no comprehensive framework exists for the development of IoT-based digital twins. Moreover, the existing frameworks do not consider the aspects introduced by the Industry 5.0 paradigm, such as sustainability, human-centricity, and resilience. This paper proposes a framework based on the one defined as the outcome of a project funded by the European Union between 2010 and 2013 called the IoT Architectural Reference Model (IoT-A or IoT-ARM), with the aim of the development and implementation of a standard IoT framework that includes digital twins. This framework establishes and implements a standardized collection of architectural instruments for modeling IoT systems in the 5.0 era, serving as a benchmark for the design and implementation of an IoT architecture focused on digital twins and enabling the sustainability, resilience, and human-centricity of the information system. Furthermore, a proof of concept of a monitoring digital twin for a vertical farming system has been developed to test the validity of the framework, and a discussion of applications in the manufacturing and service sectors is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA