Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
EMBO J ; 41(22): e109711, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35929179

RESUMEN

Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.


Asunto(s)
Mieloma Múltiple , ARN Largo no Codificante , Humanos , Estructuras R-Loop , Mieloma Múltiple/genética , Paraspeckles , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Interferones/genética , Proteínas Represoras/metabolismo , Proteínas Reguladoras de la Apoptosis/genética
3.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002648

RESUMEN

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Histona Demetilasas , Interferón Tipo I , Antraciclinas/metabolismo , Antraciclinas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Histona Demetilasas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
4.
J Exp Clin Cancer Res ; 40(1): 232, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34266450

RESUMEN

BACKGROUND: Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding. METHODS: Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308-325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis. RESULTS: Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation. CONCLUSIONS: Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Represoras/metabolismo , Proliferación Celular/fisiología , Humanos , Fosforilación , Transfección
5.
Blood Adv ; 4(22): 5616-5630, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33186461

RESUMEN

Multiple myeloma (MM) is a hematologic malignancy produced by a clonal expansion of plasma cells and characterized by abnormal production and secretion of monoclonal antibodies. This pathology exhibits an enormous heterogeneity resulting not only from genetic alterations but also from several epigenetic dysregulations. Here we provide evidence that Che-1/AATF (Che-1), an interactor of RNA polymerase II, promotes MM proliferation by affecting chromatin structure and sustaining global gene expression. We found that Che-1 depletion leads to a reduction of "active chromatin" by inducing a global decrease of histone acetylation. In this context, Che-1 directly interacts with histones and displaces histone deacetylase class I members from them. Strikingly, transgenic mice expressing human Che-1 in plasma cells develop MM with clinical features resembling those observed in the human disease. Finally, Che-1 downregulation decreases BRD4 chromatin accumulation to further sensitize MM cells to bromodomain and external domain inhibitors. These findings identify Che-1 as a promising target for MM therapy, alone or in combination with bromodomain and external domain inhibitors.


Asunto(s)
Mieloma Múltiple , Proteínas Nucleares , Proliferación Celular , Cromatina , Humanos , Mieloma Múltiple/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
6.
Nucleic Acids Res ; 48(11): 5891-5906, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32421830

RESUMEN

Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , ADN Ribosómico/genética , Genes de ARNr/genética , ARN Polimerasa I/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Daño del ADN , ADN Ribosómico/metabolismo , Homeostasis , Humanos , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Ribosomas/metabolismo
7.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29367285

RESUMEN

Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Regiones Promotoras Genéticas/genética
8.
J Exp Clin Cancer Res ; 36(1): 32, 2017 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-28214471

RESUMEN

BACKGROUND: Solid tumours are less oxygenated than normal tissues. Consequently, cancer cells acquire to be adapted to a hypoxic environment. The poor oxygenation of solid tumours is also a major indicator of an adverse cancer prognosis and leads to resistance to conventional anticancer treatments. We previously showed the involvement of Che-1/AATF (Che-1) in cancer cell survival under stress conditions. Herein we hypothesized that Che-1 plays a role in the response of cancer cells to hypoxia. METHODS: The human colon adenocarcinoma HCT116 and HT29 cell lines undepleted or depleted for Che-1 expression by siRNA, were treated under normoxic and hypoxic conditions to perform studies regarding the role of this protein in metabolic adaptation and cell proliferation. Che-1 expression was detected using western blot assays; cell metabolism was assessed by NMR spectroscopy and functional assays. Additional molecular studies were performed by RNA seq, qRT-PCR and ChIP analyses. RESULTS: Here we report that Che-1 expression is required for the adaptation of cells to hypoxia, playing an important role in metabolic modulation. Indeed, Che-1 depletion impacted on HIF-1α stabilization, thus downregulating the expression of several genes involved in the response to hypoxia and affecting glucose metabolism. CONCLUSIONS: We show that Che-1 a novel player in the regulation of HIF-1α in response to hypoxia. Notably, we found that Che-1 is required for SIAH-2 expression, a member of E3 ubiquitin ligase family that is involved in the degradation of the hydroxylase PHD3, the master regulator of HIF-1α stability.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias Colorrectales/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Represoras/genética , Hipoxia de la Célula , Proliferación Celular , Neoplasias Colorrectales/química , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Células HCT116 , Células HT29 , Humanos , Estabilidad Proteica , Análisis de Secuencia de ARN
9.
Oncotarget ; 7(43): 70546-70558, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27655709

RESUMEN

Multiple myeloma (MM) is a malignant disorder of plasma cells characterized by active production and secretion of monoclonal immunoglobulins (IgG), thus rendering cells prone to endoplasmic reticulum (ER) stress. For this reason, MM cell survival requires to maintain ER homeostasis at basal levels. Deptor is an mTOR binding protein, belonging to the mTORC1 and mTORC2 complexes. It was reported that Deptor is overexpressed in MM cells where it inhibits mTOR kinase activity and promotes cell survival by activating Akt signaling. Here we identify Deptor as a nuclear protein, able to bind DNA and regulate transcription in MM cells. In particular, we found that Deptor plays an important role in the maintenance of the ER network, sustaining the expression of several genes involved in this pathway. In agreement with this, Deptor depletion induces ER stress and synergizes the effect of the proteasome inhibitor bortezomib (Bz) in MM cells. These findings provide important new insights in the ER stress control in MM cells.


Asunto(s)
Retículo Endoplásmico , Homeostasis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Transgénicos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Interferencia de ARN
10.
Front Oncol ; 6: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913241

RESUMEN

The p53 protein is a key player in a wide range of protein networks that allow the state of "good health" of the cell. Not surprisingly, mutations of the TP53 gene are one of the most common alterations associated to cancer cells. Mutated forms of p53 (mtp53) not only lose the ability to protect the integrity of the genetic heritage of the cell but also acquire pro-oncogenic functions, behaving like dangerous accelerators of transformation and tumor progression. In recent years, many studies focused on investigating possible strategies aiming to counteract this mutant p53 "gain of function" but the results have not always been satisfactory. Che-1/AATF is a nuclear protein that binds to RNA polymerase II and plays a role in multiple fundamental processes, including control of transcription, cell cycle regulation, DNA damage response, and apoptosis. Several studies showed Che-1/AATF as an important endogenous regulator of p53 expression and activity in a variety of biological processes. Notably, this same regulation was more recently observed also on mtp53. The depletion of Che-1/AATF strongly reduces the expression of mutant p53 in several tumors in vitro and in vivo, making the cells an easier target for chemotherapy treatments. In this mini review, we report an overview of Che-1/AATF functions and discuss a possible role of Che-1/AATF in cancer therapy, with particular regard to its action on p53/mtp53.

11.
Cancer Res ; 75(21): 4560-72, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359458

RESUMEN

Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células HCT116 , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Estrés Oxidativo/fisiología , Unión Proteica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
12.
EMBO J ; 34(9): 1214-30, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25770584

RESUMEN

Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Mieloma Múltiple/patología , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Desnudos , Mieloma Múltiple/metabolismo , Complejos Multiproteicos/metabolismo , Fosforilación , Proteínas Represoras/genética , Estrés Fisiológico , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 288(32): 23348-57, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798705

RESUMEN

To combat threats posed by DNA damage, cells have evolved mechanisms, collectively termed DNA damage response (DDR). These mechanisms detect DNA lesions, signal their presence, and promote their repair. Centrosomes integrate G2/M checkpoint control and repair signals in response to genotoxic stress, acting as an efficient control mechanism when G2/M checkpoint function fails and mitosis begins in the presence of damaged DNA. Che-1 is an RNA polymerase II-binding protein involved in the regulation of gene transcription, induction of cell proliferation, and DDR. Here we provide evidence that in addition to its nuclear localization, Che-1 localizes at interphase centrosomes, where it accumulates following DNA damage or spindle poisons. We show that Che-1 depletion generates supernumerary centrosomes, multinucleated cells, and multipolar spindle formation. Notably, Che-1 depletion abolishes the ability of Chk1 to bind pericentrin and to localize at centrosomes, which, in its turn, deregulates the activation of centrosomal cyclin B-Cdk1 and advances entry into mitosis. Our results reinforce the notion that Che-1 plays an important role in DDR and that its contribution seems to be relevant for the spindle assembly checkpoint.


Asunto(s)
Antígenos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Centrosoma/metabolismo , Cromosomas Humanos/metabolismo , Daño del ADN , Mitosis/fisiología , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Antígenos/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromosomas Humanos/genética , Ciclina B/genética , Ciclina B/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Quinasas/genética , Proteínas Represoras/genética
14.
Cell ; 146(1): 67-79, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21722948

RESUMEN

DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.


Asunto(s)
Metilación de ADN , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Timina ADN Glicosilasa/metabolismo , 5-Metilcitosina/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Citidina Desaminasa/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Timina ADN Glicosilasa/genética , Transcripción Genética
15.
DNA Repair (Amst) ; 10(4): 380-9, 2011 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-21317046

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes a post-translational modification that plays a crucial role in coordinating the signalling cascade in response to stress stimuli. During the DNA damage response, phosphorylation by ataxia telangiectasia mutated (ATM) kinase and checkpoint kinase Chk2 induces the stabilization of Che-1 protein, which is critical for the maintenance of G2/M arrest. In this study we showed that poly(ADP-ribosyl)ation, beyond phosphorylation, is involved in the regulation of Che-1 stabilization following DNA damage. We demonstrated that Che-1 accumulation upon doxorubicin treatment is reduced after the inhibition of PARP activity in HCT116 cells and in PARP-1 knock-out or silenced cells. In accordance, impairment in Che-1 accumulation by PARP inhibition reduced Che-1 occupancy at p21 promoter and affected the expression of the corresponding gene. Epistasis experiments showed that the effect of poly(ADP-ribosyl)ation on Che-1 stabilization is independent from ATM kinase activity. Indeed we demonstrated that Che-1 protein co-immunoprecipitates with ADP-ribose polymers and that PARP-1 directly interacts with Che-1, promoting its modification in vitro and in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Daño del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Cancer Cell ; 18(2): 122-34, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20708154

RESUMEN

Che-1 is a RNA polymerase II binding protein involved in the regulation of gene transcription and, in response to DNA damage, promotes p53 transcription. In this study, we investigated whether Che-1 regulates mutant p53 expression. We found that Che-1 is required for sustaining mutant p53 expression in several cancer cell lines, and that Che-1 depletion by siRNA induces apoptosis both in vitro and in vivo. Notably, loss of Che-1 activates DNA damage checkpoint response and induces transactivation of p73. Therefore, these findings underline the important role that Che-1 has in survival of cells expressing mutant p53.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Supervivencia Celular/fisiología , Daño del ADN , Proteínas Represoras/fisiología , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Proteínas Nucleares/genética , ARN Interferente Pequeño , Proteínas Represoras/genética , Trasplante Heterólogo , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/genética
17.
Mol Cell Biol ; 29(8): 1989-98, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19188449

RESUMEN

The NAD(+)-dependent histone deacetylase hSirT1 regulates cell survival and stress responses by inhibiting p53-, NF-kappaB-, and E2F1-dependent transcription. Here we show that the hSirT1/PCAF interaction controls the E2F1/p73 apoptotic pathway. hSirT1 represses E2F1-dependent P1p73 promoter activity in untreated cells and inhibits its activation in response to DNA damage. hSirT1, PCAF, and E2F1 are corecruited in vivo on theP1p73 promoter. hSirT1 deacetylates PCAF in vitro and modulates PCAF acetylation in vivo. In cells exposed to apoptotic DNA damage, nuclear NAD(+) levels decrease and inactivate hSirT1 without altering the hSirT1 interaction with PCAF and hSirT1 binding to the P1p73 promoter. The reactivation of hSirT1 by pyruvate that increases the [NAD(+)]/[NADH] ratio completely abolished the DNA damage-induced activation of TAp73 expression, thus linking the modulation of chromatin-bound hSirT1 deacetylase activity by the intracellular redox state with P1p73 promoter activity. The release of PCAF from hSirT1 repression favors the assembly of transcriptionally active PCAF/E2F1 complexes onto the P1p73 promoter and p53-independent apoptosis. Our results identify hSirT1 and PCAF as potential targets to modulate tumor cell survival and chemoresistance irrespective of p53 status.


Asunto(s)
Apoptosis , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteínas Nucleares/metabolismo , Sirtuinas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Sirtuina 1 , Transcripción Genética , Proteína Tumoral p73
18.
Neuroreport ; 19(5): 531-5, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18388733

RESUMEN

Che-1 is a nuclear protein involved in the regulation of gene transcription and cell proliferation. It has also been shown to localize to the cytoplasm of postmitotic neuronal cells, where it is able to interact with the microtubule-associated protein tau. Cyclin-dependent kinase 5 (Cdk5) is a postmitotic proline-directed serine/threonine kinase that hyperphosphorylates tau under pathological conditions. We observed that Che-1 overexpression induces Cdk5 expression both at the mRNA and protein levels. Furthermore, we show that Che-1 directly interacts with Cdk5 protein in vivo. Cdk5/Che-1 complex formation does not compete with Cdk5/p35 interaction, thus Che-1 is able to bind the active kinase complex. Finally, we demonstrated that Che-1 is itself a Cdk5 substrate.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación de la Expresión Génica , Expresión Génica/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Cerebelo/citología , Quinasa 5 Dependiente de la Ciclina/genética , Regulación de la Expresión Génica/genética , Humanos , Inmunoprecipitación/métodos , Ratones , Proteínas Nucleares , Ratas , Ratas Wistar , Factores de Transcripción/genética , Transfección/métodos
19.
J Biol Chem ; 282(27): 19685-91, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17468107

RESUMEN

We have previously demonstrated that DNA damage leads to stabilization and accumulation of Che-1, an RNA polymerase II-binding protein that plays an important role in transcriptional activation of p53 and in maintenance of the G(2)/M checkpoint. Here we show that Che-1 is down-regulated during the apoptotic process. We found that the E3 ligase HMD2 physically and functionally interacts with Che-1 and promotes its degradation via the ubiquitin-dependent proteasomal system. Furthermore, we found that in response to apoptotic stimuli Che-1 interacts with the peptidyl-prolyl isomerase Pin1 and that conformational changes generated by Pin1 are required for Che-1/HDM2 interaction. Notably, a Che-1 mutant lacking the capacity to bind Pin1 exhibits an increased half-life and this correlates with a diminished apoptosis in response to genotoxic stress. Our results establish Che-1 as a new Pin1 and HDM2 target and confirm its important role in the cellular response to DNA damage.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Daño del ADN , Isomerasa de Peptidilprolil/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , División Celular , Línea Celular Tumoral , Regulación hacia Abajo , Fase G2 , Humanos , Ratones , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
J Cell Sci ; 120(Pt 11): 1852-8, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17488777

RESUMEN

Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid beta-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos de Neoplasias/química , Proteínas Reguladoras de la Apoptosis/química , Muerte Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/química , Unión Proteica , Transporte de Proteínas , Proteínas Represoras/química , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...