Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984618

RESUMEN

Background and Objectives: Remote patient monitoring (RPM) of vital signs and symptoms for lung transplant recipients (LTRs) has become increasingly relevant in many situations. Nevertheless, RPM research integrating multisensory home monitoring in LTRs is scarce. We developed a novel multisensory home monitoring device and tested it in the context of COVID-19 vaccinations. We hypothesize that multisensory RPM and smartphone-based questionnaire feedback on signs and symptoms will be well accepted among LTRs. To assess the usability and acceptability of a remote monitoring system consisting of wearable devices, including home spirometry and a smartphone-based questionnaire application for symptom and vital sign monitoring using wearable devices, during the first and second SARS-CoV-2 vaccination. Materials and Methods: Observational usability pilot study for six weeks of home monitoring with the COVIDA Desk for LTRs. During the first week after the vaccination, intensive monitoring was performed by recording data on physical activity, spirometry, temperature, pulse oximetry and self-reported symptoms, signs and additional measurements. During the subsequent days, the number of monitoring assessments was reduced. LTRs reported on their perceptions of the usability of the monitoring device through a purpose-designed questionnaire. Results: Ten LTRs planning to receive the first COVID-19 vaccinations were recruited. For the intensive monitoring study phase, LTRs recorded symptoms, signs and additional measurements. The most frequent adverse events reported were local pain, fatigue, sleep disturbance and headache. The duration of these symptoms was 5-8 days post-vaccination. Adherence to the main monitoring devices was high. LTRs rated usability as high. The majority were willing to continue monitoring. Conclusions: The COVIDA Desk showed favorable technical performance and was well accepted by the LTRs during the vaccination phase of the pandemic. The feasibility of the RPM system deployment was proven by the rapid recruitment uptake, technical performance (i.e., low number of errors), favorable user experience questionnaires and detailed individual user feedback.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Receptores de Trasplantes , Dispositivos Electrónicos Vestibles , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Proyectos Piloto , Vacunación , Trasplante de Pulmón
2.
JMIR Hum Factors ; 9(1): e31448, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35171107

RESUMEN

BACKGROUND: Research integrating multisensory home-monitoring in respiratory disease is scarce. Therefore, we created a novel multisensory home-monitoring device tailored for long-term respiratory disease management (named the CAir-Desk). We hypothesize that recent technological accomplishments can be integrated into a multisensory participant-driven platform. We also believe that this platform could improve chronic disease management and be accessible to large groups at an acceptable cost. OBJECTIVE: This study aimed to report on user adherence and acceptance as well as system functionality of the CAir-Desk in a sample of participants with stable chronic obstructive pulmonary disease (COPD) or asthma. METHODS: We conducted an observational usability study. Participants took part in 4 weeks of home-monitoring with the CAir-Desk. The CAir-Desk recorded data from all participants on symptom burden, physical activity, spirometry, and environmental air quality; data on sputum production, and nocturnal cough were only recorded for participants who experienced symptoms. After the study period, participants reported on their perceptions of the usability of the monitoring device through a purpose-designed questionnaire. We used descriptive statistics and visualizations to display results. RESULTS: Ten participants, 5 with COPD and 5 with asthma took part in this study. They completed symptom burden questionnaires on a median of 96% (25th percentile 14%, 75th percentile 96%), spirometry recordings on 55% (20%, 94%), wrist-worn physical activity recordings on 100% (97%, 100%), arm-worn physical activity recordings on 45% (13%, 63%), nocturnal cough recordings on 34% (9%, 54%), sputum recordings on 5% (3%, 12%), and environmental air quality recordings on 100% (99%, 100%) of the study days. The participants indicated that the measurements consumed a median of 13 (10, 15) min daily, and that they preferred the wrist-worn physical activity monitor to the arm-worn physical activity monitor. CONCLUSIONS: The CAir-Desk showed favorable technical performance and was well-accepted by our sample of participants with stable COPD and asthma. The obtained insights were used in a redesign of the CAir-Desk, which is currently applied in a randomized controlled trial including an interventional program.

3.
Phys Rev E ; 103(2-1): 023311, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33736117

RESUMEN

Drying of colloidal suspension towards the exploitation of the resultant nanoparticle deposition has been applied in different research and engineering fields. Recent experimental studies have shown that neck-based thermal structure (NTS) by colloidal nanoparticle deposition between microsize filler particle configuration (FPC) can significantly enhance vertical heat conduction in innovative three-dimensional chip stacks [Brunschwiler et al., J. Electron. Packag. 138, 041009 (2016)10.1115/1.4034927]. However, an in-depth understanding of the mechanisms of colloidal liquid drying, neck formation, and their influence on heat conduction is still lacking. In this paper, using the lattice Boltzmann method, we model neck formation in FPCs and evaluate the thermal performances of resultant NTSs. The colloidal liquid is found drying continuously from the periphery of the microstructure to its center with a decreasing drying rate. With drying, more necks of smaller size are formed between adjacent filler particles, while fewer necks of larger size are formed between filler particle and the top/bottom plate of the FPCs. The necks, forming critical throats between the filler particles, are found to improve the heat flux significantly, leading to an overall heat conduction enhancement of 2.4 times. In addition, the neck count, size, and distribution as well as the thermal performance of NTSs are found to be similar for three different FPCs at a constant filler particle volume fraction. Our simulation results on neck formation and thermal performances of NTSs are in good agreement with experimental results. This demonstrates that the current lattice Boltzmann models are accurate in modeling drying of colloidal suspension and heat conduction in microporous structures, and have high potentials to study other problems such as surface coating, salt transport, salt crystallization, and food preserving.

4.
JMIR Res Protoc ; 9(10): e20412, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090112

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the most common disorders in the world. COPD is characterized by airflow obstruction, which is not fully reversible. Patients usually experience breathing-related symptoms with periods of acute worsening and a substantial decrease in the health-related quality-of-life. Active and comprehensive disease management can slow down the progressive course of the disease and improve patients' disabilities. Technological progress and digitalization of medicine have the potential to make elaborate interventions easily accessible and applicable to a broad spectrum of patients with COPD without increasing the costs of the intervention. OBJECTIVE: This study aims to develop a comprehensive telemonitoring and hybrid virtual coaching solution and to investigate its effects on the health-related quality of life of patients with COPD. METHODS: A monocentric, assessor-blind, two-arm (intervention/control) randomized controlled trial will be performed. Participants randomized to the control group will receive usual care and a CAir Desk (custom-built home disease-monitoring device to telemonitor disease-relevant parameters) for 12 weeks, without feedback or scores of the telemonitoring efforts and virtual coaching. Participants randomized to the intervention group will receive a CAir Desk and a hybrid digital coaching intervention for 12 weeks. As a primary outcome, we will measure the delta in the health-related quality of life, which we will assess with the St. George Respiratory Questionnaire, from baseline to week 12 (the end of the intervention). RESULTS: The development of the CAir Desk and virtual coach has been completed. Recruitment to the trial started in September 2020. We expect to start data collection by December 2020 and expect it to last for approximately 18 months, as we follow a multiwave approach. We expect to complete data collection by mid-2022 and plan the dissemination of the results subsequently. CONCLUSIONS: To our knowledge, this is the first study investigating a combination of telemonitoring and hybrid virtual coaching in patients with COPD. We will investigate the effectiveness, efficacy, and usability of the proposed intervention and provide evidence to further develop app-based and chatbot-based disease monitoring and interventions in COPD. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04373070; https://clinicaltrials.gov/ct2/show/NCT04373070. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/20412.

5.
AMIA Annu Symp Proc ; 2020: 1003-1011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33936476

RESUMEN

Continuous patient monitoring is essential to achieve an effective and optimal patient treatment in the intensive care unit. In the specific case of epilepsy it is the only way to achieve a correct diagnosis and a subsequent optimal medication plan if possible. In addition to automatic vital sign monitoring, epilepsy patients need manual monitoring by trained personnel, a task that is very difficult to be performed continuously for each patient. Moreover, epileptic manifestations are highly personalized even within the same type of epilepsy. In this work we assess two machine learning methods, dictionary learning and an autoencoder based on long short-term memory (LSTM) cells, on the task of personalized epileptic event detection in videos, with a set of features that were specifically developed with an emphasis on high motion sensitivity. According to the strengths of each method we have selected different types of epilepsy, one with convulsive behaviour and one with very subtle motion. The results on five clinical patients show a highly promising ability of both methods to detect the epileptic events as anomalies deviating from the stable/normal patient status.


Asunto(s)
Epilepsia , Aprendizaje Automático , Monitoreo Fisiológico , Medicina de Precisión , Electroencefalografía/métodos , Humanos , Unidades de Cuidados Intensivos , Masculino , Convulsiones , Grabación en Video
6.
Sensors (Basel) ; 19(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340542

RESUMEN

This paper introduces technical solutions devised to support the Deployment Site - Regione Emilia Romagna (DS-RER) of the ACTIVAGE project. The ACTIVAGE project aims at promoting IoT (Internet of Things)-based solutions for Active and Healthy ageing. DS-RER focuses on improving continuity of care for older adults (65+) suffering from aftereffects of a stroke event. A Wireless Sensor Kit based on Wi-Fi connectivity was suitably engineered and realized to monitor behavioral aspects, possibly relevant to health and wellbeing assessment. This includes bed/rests patterns, toilet usage, room presence and many others. Besides hardware design and validation, cloud-based analytics services are introduced, suitable for automatic extraction of relevant information (trends and anomalies) from raw sensor data streams. The approach is general and applicable to a wider range of use cases; however, for readability's sake, two simple cases are analyzed, related to bed and toilet usage patterns. In particular, a regression framework is introduced, suitable for detecting trends (long and short-term) and labeling anomalies. A methodology for assessing multi-modal daily behavioral profiles is introduced, based on unsupervised clustering techniques. The proposed framework has been successfully deployed at several real-users' homes, allowing for its functional validation. Clinical effectiveness will be assessed instead through a Randomized Control Trial study, currently being carried out.

7.
Phys Rev E ; 99(5-1): 053306, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212433

RESUMEN

A tricoupled hybrid lattice Boltzmann model (LBM) is developed to simulate colloidal liquid evaporation and colloidal particle deposition during the nonisothermal drying of colloidal suspensions in micropore structures. An entropic multiple-relaxation-time multirange pseudopotential two-phase LBM for isothermal interfacial flow is first coupled to an extended temperature equation for simulating nonisothermal liquid drying. Then the coupled model is further coupled with a modified convection diffusion equation to consider the nonisothermal drying of colloidal suspensions. Two drying examples are considered. First, drying of colloidal suspensions in a two-pillar micropore structure is simulated in two dimensions (2D), and the final configuration of colloidal particles is compared with the experimental one. Good agreement is observed. Second, at the temperature of 343.15 K (70^{∘}C), drying of colloidal suspensions in a complex spiral-shaped micropore structure containing 220 pillars is simulated (also in 2D). The drying pattern follows the designed spiral shape due to capillary pumping, i.e., transport of the liquid from larger pores to smaller ones by capillary pressure difference. Since the colloidal particles are passively carried with liquid, they accumulate at the small menisci as drying proceeds. As liquid evaporates at the small menisci, colloidal particles are deposited, eventually forming solid structures between the pillars (primarily), and at the base of the pillars (secondarily). As a result, the particle deposition conforms to the spiral route. Qualitatively, the simulated liquid and particle configurations agree well with the experimental ones during the entire drying process. Quantitatively, the model demonstrates that the evaporation rate and the particle accumulation rate slowly decrease during drying, similar to what is seen in the experimental results, which is due to the reduction of the liquid-vapor interfacial area. In conclusion, the hybrid model shows the capability and accuracy for simulating nonisothermal drying of colloidal suspensions in a complex micropore structure both qualitatively and quantitatively, as it includes all the required physics and captures all the complex features observed experimentally. Such a tricoupled LBM has a high potential to become an efficient numerical tool for further investigation of real and complex engineering problems incorporating drying of colloidal suspensions in porous media.

8.
Rev Sci Instrum ; 86(12): 124903, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26724058

RESUMEN

The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm(2) K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.

9.
ACS Appl Mater Interfaces ; 7(1): 838-44, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25487229

RESUMEN

In situ assembly of high thermal conductivity materials in severely confined spaces is an important problem bringing with it scientific challenges but also significant application relevance. Here we present a simple, affordable, and reproducible methodology for synthesizing such materials, composed of hierarchical diamond micro/nanoparticle scaffolds and an ethylenediamine coating. An important feature of the assembly process is the utilization of ethylenediamine as an immobilizing agent to secure the integrity of the microparticle scaffolds during and after each processing step. After other liquid components employed in the scaffolds assembly dry out, the immobilization agent solidifies forming a stable coated particle scaffold structure. Nanoparticles tend to concentrate in the shell and neck regions between adjacent microparticles. The interface between core and shell, along with the concentrated neck regions of nanoparticles, significantly enhance the thermal conductivity, making such materials an excellent candidate as thermal underfills in the electronics industry, where efficient heat removal is a major stumbling block toward increasing packing density. We show that the presented structures exhibit nearly 1 order of magnitude improvement in thermal conductivity, enhanced temperature uniformity, and reduced processing time compared to commercially available products for electronics cooling, which underpins their potential utility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA