Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 55(2): 246-254, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702998

RESUMEN

APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA.


Asunto(s)
Apolipoproteínas B , Citidina Desaminasa , Niño , Humanos , Preescolar , Apolipoproteínas B/genética , Citidina Desaminasa/genética , Mutagénesis/genética , ARN Mensajero/genética , Desaminasas APOBEC-1/genética , Intestino Delgado
2.
Nat Commun ; 13(1): 3949, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803914

RESUMEN

Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , ADN Glicosilasas/genética , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN Glicosilasas/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mutación , Tasa de Mutación
3.
Gastroenterology ; 161(2): 548-559.e23, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33895166

RESUMEN

BACKGROUND & AIMS: Colorectal cancer (CRC) is thought to arise when the cumulative mutational burden within colonic crypts exceeds a certain threshold that leads to clonal expansion and ultimately neoplastic transformation. Therefore, quantification of the fixation and subsequent expansion of somatic mutations in normal epithelium is key to understanding colorectal cancer initiation. The aim of the present study was to determine how advantaged expansions can be accommodated in the human colon. METHODS: Immunohistochemistry was used to visualize loss of the cancer driver KDM6A in formalin-fixed paraffin-embedded (FFPE) normal human colonic epithelium. Combining microscopy with neural network-based image analysis, we determined the frequencies of KDM6A-mutant crypts and fission/fusion intermediates as well as the spatial distribution of clones. Mathematical modeling then defined the dynamics of their fixation and expansion. RESULTS: Interpretation of the age-related behavior of KDM6A-negative clones revealed significant competitive advantage in intracrypt dynamics as well as a 5-fold increase in crypt fission rate. This was not accompanied by an increase in crypt fusion. Mathematical modeling of crypt spacing identifies evidence for a crypt diffusion process. We define the threshold fission rate at which diffusion fails to accommodate new crypts, which can be exceeded by KRAS activating mutations. CONCLUSIONS: Advantaged gene mutations in KDM6A expand dramatically by crypt fission but not fusion. The crypt diffusion process enables accommodation of the additional crypts up to a threshold value, beyond which polyp growth may occur. The fission rate associated with KRAS mutations offers a potential explanation for KRAS-initiated polyps.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/genética , Pólipos del Colon/genética , Neoplasias Colorrectales/genética , Células Epiteliales/patología , Histona Demetilasas/genética , Mucosa Intestinal/patología , Mutación , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Pólipos del Colon/metabolismo , Pólipos del Colon/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Difusión , Células Epiteliales/metabolismo , Femenino , Histona Demetilasas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adulto Joven
4.
Bone Joint Res ; 9(5): 202-210, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32566141

RESUMEN

AIMS: This pilot study tested the performance of a rapid assay for diagnosing prosthetic joint infection (PJI), which measures synovial fluid calprotectin from total hip and knee revision patients. METHODS: A convenience series of 69 synovial fluid samples from revision patients at the Norfolk and Norwich University Hospital were collected intraoperatively (52 hips, 17 knees) and frozen. Synovial fluid calprotectin was measured retrospectively using a new commercially available lateral flow assay for PJI diagnosis (Lyfstone AS) and compared to International Consensus Meeting (ICM) 2018 criteria and clinical case review (ICM-CR) gold standards. RESULTS: According to ICM, 24 patients were defined as PJI positive and the remaining 45 were negative. The overall accuracy of the lateral flow test compared to ICM was 75.36% (52/69, 95% CI 63.51% to 84.95%), sensitivity and specificity were 75.00% (18/24, 95% CI 53.29% to 90.23%) and 75.56% (34/45, 95% CI 60.46% to 87.12%), respectively, positive predictive value (PPV) was 62.07% (18/29, 95% CI 48.23% to 74.19%) and negative predictive value (NPV) was 85.00% (34/40, 95% CI 73.54% to 92.04%), and area under the receiver operating characteristic (ROC) curve (AUC) was 0.78 (95% CI 0.66 to 0.87). Patient data from discordant cases were reviewed by the clinical team to develop the ICM-CR gold standard. The lateral flow test performance improved significantly when compared to ICM-CR, with accuracy increasing to 82.61% (57/69, 95% CI 71.59% to 90.68%), sensitivity increasing to 94.74% (18/19, 95% CI 73.97% to 99.87%), NPV increasing to 97.50% (39/40, 95% CI 85.20% to 99.62%), and AUC increasing to 0.91 (95% CI 0.81 to 0.96). Test performance was better in knees (100.00% accurate (17/17, 95% CI 80.49% to 100.00%)) compared to hips (76.92% accurate (40/52, 95% CI 63.16% to 87.47%)). CONCLUSION: This study demonstrates that the calprotectin lateral flow assay could be an effective diagnostic test for PJI, however additional prospective studies testing fresh samples are required.Cite this article: Bone Joint Res. 2020;9(5):202-210.

5.
Cell Stem Cell ; 22(6): 909-918.e8, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29779891

RESUMEN

We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.


Asunto(s)
Antígenos Nucleares/genética , Colon/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Monoaminooxidasa/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Alelos , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Niño , Humanos , Persona de Mediana Edad , Modelos Estadísticos , Monoaminooxidasa/metabolismo , Células Madre/citología , Células Madre/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...