Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18001, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865691

RESUMEN

The objectives of this study were twofold: (1) to identify potential differences in the ruminal and fecal metabolite profiles of Nelore bulls under different nutritional interventions; and (2) to identify metabolites associated with cattle sustainability related-traits. We used different nutritional interventions in the feedlot: conventional (Conv; n = 26), and by-product (ByPr, n = 26). Thirty-eight ruminal fluid and 27 fecal metabolites were significantly different (P < 0.05) between the ByPr and Conv groups. Individual dry matter intake (DMI), residual feed intake (RFI), observed water intake (OWI), predicted water intake (WI), and residual water intake (RWI) phenotypes were lower (P < 0.05) in the Conv group, while the ByPr group exhibited lower methane emission (ME) (P < 0.05). Ruminal fluid dimethylamine was significantly associated (P < 0.05) with DMI, RFI, FE (feed efficiency), OWI and WI. Aspartate was associated (P < 0.05) with DMI, RFI, FE and WI. Fecal C22:1n9 was significantly associated with OWI and RWI (P < 0.05). Fatty acid C14:0 and hypoxanthine were significantly associated with DMI and RFI (P < 0.05). The results demonstrated that different nutritional interventions alter ruminal and fecal metabolites and provided new insights into the relationship of these metabolites with feed efficiency and water intake traits in Nelore bulls.


Asunto(s)
Ingestión de Líquidos , Conducta Alimentaria , Bovinos , Animales , Masculino , Metano/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Ingestión de Alimentos , Heces
2.
Biochem Biophys Rep ; 33: 101420, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36654922

RESUMEN

Epigenetic repression has been linked to the regulation of different cell states. In this study, we focus on the influence of this repression, mainly by H3K27me3, over gene expression in muscle cells, which may affect mineral content, a phenotype that is relevant to muscle function and beef quality. Based on the inverse relationship between H3K27me3 and gene expression (i.e., epigenetic repression) and on contrasting sample groups, we computationally predicted regulatory genes that affect muscle mineral content. To this end, we applied the TRIAGE predictive method followed by a rank product analysis. This methodology can predict regulatory genes that might be affected by repressive epigenetic regulation related to mineral concentration. Annotation of orthologous genes, between human and bovine, enabled our investigation of gene expression in the Longissimus thoracis muscle of Bos indicus cattle. The animals under study had a contrasting mineral content in their muscle cells. We identified candidate regulatory genes influenced by repressive epigenetic mechanisms, linking histone modification to mineral content in beef samples. The discovered candidate genes take part in multiple biological pathways, i.e., impulse transmission, cell signalling, immunological, and developmental pathways. Some of these genes were previously associated with mineral content or regulatory mechanisms. Our findings indicate that epigenetic repression can partially explain the gene expression profiles observed in muscle samples with contrasting mineral content through the candidate regulators here identified.

3.
Front Microbiol ; 14: 1282851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38163076

RESUMEN

Background: Ruminants harbor a complex microbial community within their gastrointestinal tract, which plays major roles in their health and physiology. Brazil is one of the largest producers of beef in the world and more than 90% of the beef cattle herds are composed of pure and crossbred Nelore (Bos indicus). Despite its importance to the Brazilian economy and human feeding, few studies have characterized the Nelore microbiome. Therefore, using shotgun metagenomics, we investigated the impact of diet on the composition and functionality of the Nelore microbiome, and explored the associations between specific microbial taxa and their functionality with feed efficiency and methane emission. Results: The ruminal microbiome exhibited significantly higher microbial diversity, distinctive taxonomic profile and variations in microbial functionality compared to the fecal microbiome, highlighting the distinct contributions of the microbiomes of these environments. Animals subjected to different dietary treatments exhibited significant differences in their microbiomes' archaeal diversity and in the abundance of 89 genera, as well as in the functions associated with the metabolism of components of each diet. Moreover, depending on the diet, feed-efficient animals and low methane emitters displayed higher microbial diversity in their fecal microbiome. Multiple genera were associated with an increase or decrease of the phenotypes. Upon analyzing the functions attributed to these taxa, we observed significant differences on the ruminal taxa associated with feed efficient and inefficient cattle. The ruminal taxa that characterized feed efficient cattle stood out for having significantly more functions related to carbohydrate metabolism, such as monosaccharides, di-/oligosaccharides and amino acids. The taxa associated with methane emission had functions associated with methanogenesis and the production of substrates that may influence methane production, such as hydrogen and formate. Conclusion: Our findings highlight the significant role of diet in shaping Nelore microbiomes and how its composition and functionality may affect production traits such as feed efficiency and methane emission. These insights provide valuable support for the implementation of novel feeding and biotechnological strategies.

4.
Genes (Basel) ; 13(12)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36553605

RESUMEN

Traditional transcriptomics approaches have been used to identify candidate genes affecting economically important livestock traits. Regulatory variants affecting these traits, however, remain under covered. Genomic regions showing allele-specific expression (ASE) are under the effect of cis-regulatory variants, being useful for improving the accuracy of genomic selection models. Taking advantage of the better of these two methods, we investigated single nucleotide polymorphisms (SNPs) in regions showing differential ASE (DASE SNPs) between contrasting groups for beef quality traits. For these analyses, we used RNA sequencing data, imputed genotypes and genomic estimated breeding values of muscle-related traits from 190 Nelore (Bos indicus) steers. We selected 40 contrasting unrelated samples for the analysis (N = 20 animals per contrasting group) and used a beta-binomial model to identify ASE SNPs in only one group (i.e., DASE SNPs). We found 1479 DASE SNPs (FDR ≤ 0.05) associated with 55 beef-quality traits. Most DASE genes were involved with tenderness and muscle homeostasis, presenting a co-expression module enriched for the protein ubiquitination process. The results overlapped with epigenetics and phenotype-associated data, suggesting that DASE SNPs are potentially linked to cis-regulatory variants affecting simultaneously the transcription and phenotype through chromatin state modulation.


Asunto(s)
Carne , Músculo Esquelético , Bovinos/genética , Animales , Alelos , Fenotipo , Genotipo , Músculo Esquelético/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1865(8): 194886, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36265837

RESUMEN

Single nucleotide polymorphisms showing allele-specific expression (ASE SNPs) are useful for cis-regulatory variants discovery. Despite this potential, there are expensive costs involved in genome-level ASE analysis for large sample sizes. If different data resolutions are available, genotype imputation can be used to mitigate this limitation. Aiming to increase the power to detect regulatory variants, we used a large dataset (>4 million) of imputed SNP genotypes and RNA-Seq data from 190 Nelore steers. Differences between major and minor allele expressions in muscle were tested with a Binomial Test. We identified 38,177 ASE SNPs (FDR ≤ 0.05) within 7304 linkage disequilibrium blocks. After that, we searched for aseQTLs (i.e., neighboring SNPs potentially regulating the ASE SNPs' allelic expression) by comparing the ASE of heterozygous to homozygous sample groups under a Wilcoxon Rank Sum test. We identified 21,543 aseQTLs potentially regulating 430 ASE SNPs (FDR ≤ 0.05). A total of 3333 cis-eQTLs (being 2098 ASE SNPs and 1075 aseQTLs) were associated with the expression of 758 transcripts (FDR ≤ 0.05), demonstrating the cis-regulatory effect of these ASE SNPs and aseQTLs. Data integration showed reproducibility with previous studies in bovine ASE and genomic imprinting. Furthermore, we identified 36,756 novel ASE regions due to the imputation approach. Comparisons with epigenetics data from Functional Annotation of Animal Genomes (FAANG) suggest a regulatory potential of the ASE-related SNPs. The affected genes were enriched in metabolic pathways essential for muscle homeostasis. These findings reinforce the potential of using ASE for discovering cis-regulatory SNPs that may affect muscle-related traits.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Bovinos/genética , Animales , Alelos , Reproducibilidad de los Resultados , Músculos
6.
Epigenetics Chromatin ; 15(1): 15, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562812

RESUMEN

BACKGROUND: Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs. However, little is known about epigenetic effects on Bos taurus muscle and their implications in tenderness, and no studies have been conducted in Bos indicus. RESULTS: Comparing methylation profile of Bos indicus skeletal muscle with contrasting beef tenderness at 14 days after slaughter, we identified differentially methylated cytosines and regions associated with this trait. Interestingly, muscle that became tender beef had higher levels of hypermethylation compared to the tough group. Enrichment analysis of predicted target genes suggested that differences in methylation between tender and tough beef may affect signal transduction pathways, among which G protein signaling was a key pathway. In addition, different methylation levels were found associated with expression levels of GNAS, PDE4B, EPCAM and EBF3 genes. The differentially methylated elements correlated with EBF3 and GNAS genes overlapped CpG islands and regulatory elements. GNAS, a complex imprinted gene, has a key role on G protein signaling pathways. Moreover, both G protein signaling pathway and the EBF3 gene regulate muscle homeostasis, relaxation, and muscle cell-specificity. CONCLUSIONS: We present differentially methylated loci that may be of interest to decipher the epigenetic mechanisms affecting tenderness. Supported by the previous knowledge about regulatory elements and gene function, the methylation data suggests EBF3 and GNAS as potential candidate genes and G protein signaling as potential candidate pathway associated with beef tenderness via methylation.


Asunto(s)
Metilación de ADN , Carne , Animales , Bovinos , Islas de CpG , Carne/análisis , Músculo Esquelético/metabolismo , Transducción de Señal
7.
Sci Rep ; 11(1): 7321, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795794

RESUMEN

Single nucleotide polymorphisms (SNPs) located in transcript sequences showing allele-specific expression (ASE SNPs) were previously identified in the Longissimus thoracis muscle of a Nelore (Bos indicus) population consisting of 190 steers. Given that the allele-specific expression pattern may result from cis-regulatory SNPs, called allele-specific expression quantitative trait loci (aseQTLs), in this study, we searched for aseQTLs in a window of 1 Mb upstream and downstream from each ASE SNP. After this initial analysis, aiming to investigate variants with a potential regulatory role, we further screened our aseQTL data for sequence similarity with transcription factor binding sites and microRNA (miRNA) binding sites. These aseQTLs were overlapped with methylation data from reduced representation bisulfite sequencing (RRBS) obtained from 12 animals of the same population. We identified 1134 aseQTLs associated with 126 different ASE SNPs. For 215 aseQTLs, one allele potentially affected the affinity of a muscle-expressed transcription factor to its binding site. 162 aseQTLs were predicted to affect 149 miRNA binding sites, from which 114 miRNAs were expressed in muscle. Also, 16 aseQTLs were methylated in our population. Integration of aseQTL with GWAS data revealed enrichment for traits such as meat tenderness, ribeye area, and intramuscular fat . To our knowledge, this is the first report of aseQTLs identification in bovine muscle. Our findings indicate that various cis-regulatory and epigenetic mechanisms can affect multiple variants to modulate the allelic expression. Some of the potential regulatory variants described here were associated with the expression pattern of genes related to interesting phenotypes for livestock. Thus, these variants might be useful for the comprehension of the genetic control of these phenotypes.


Asunto(s)
Alelos , Carne , Músculo Esquelético/metabolismo , Animales , Sitios de Unión , Biotecnología/métodos , Bovinos , Metilación de ADN , Expresión Génica , Regulación de la Expresión Génica , Marcadores Genéticos , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Heterocigoto , Desequilibrio de Ligamiento , Metilación , MicroARNs/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
8.
Genes (Basel) ; 12(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419037

RESUMEN

MicroRNAs (miRNAs) are key regulators of gene expression, potentially affecting several biological processes, whose function can be altered by sequence variation. Hence, the integration of single nucleotide polymorphisms (SNP) and miRNAs can explain individual differences in economic traits. To provide new insights into the effects of SNPs on miRNAs and their related target genes, we carried out a multi-omic analysis to identify SNPs in miRNA mature sequences (miR-SNPs) associated with fatty acid (FA) composition in the Nelore cattle. As a result, we identified 3 miR-SNPs in different miRNAs (bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291) significantly associated with FA traits (p-value < 0.02, Bonferroni corrected). Among these, the rs110817643C>T, located in the seed sequence of the bta-miR-1291, was associated with different ω6 FAs, polyunsaturated FA, and polyunsaturated:saturated FA ratios. Concerning the other two miR-SNPs, the rs43400521T>C (located in the bta-miR-2419-3p) was associated with C12:0 and C18:1 cis-11 FA, whereas the rs516857374A>G (located in the bta-miR-193a-2) was associated with C18:3 ω6 and ratio of ω6/ω3 traits. Additionally, to identify potential biomarkers for FA composition, we described target genes affected by these miR-SNPs at the mRNA or protein level. Our multi-omics analysis outlines the effects of genetic polymorphism on miRNA, and it highlights miR-SNPs and target candidate genes that control beef fatty acid composition.


Asunto(s)
Ácidos Grasos/análisis , MicroARNs/genética , Músculo Esquelético/metabolismo , Carne Roja/análisis , Crianza de Animales Domésticos , Animales , Brasil , Cruzamiento , Bovinos , Ácidos Grasos/metabolismo , Femenino , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Masculino , MicroARNs/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Sci Rep ; 10(1): 10204, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576896

RESUMEN

Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.


Asunto(s)
Bovinos/genética , Regulación de la Expresión Génica/genética , Músculo Esquelético/fisiología , Alelos , Animales , Genoma/genética , Genómica/métodos , Genotipo , Carne , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...