Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMJ Case Rep ; 13(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33318253

RESUMEN

A 4-year-old girl was referred to the geneticist with a history of ataxia associated with intention tremor of the hands, strabismus and hypermetropy. Her symptoms presented about 2 years earlier with inability to walk unaided and lower limbs hypotonia. Cognitive functions were normal. Brain MRI showed a cerebellar and vermian hypoplasia with enlargement of both the cerebrospinal fluid spaces and the IV brain ventricle. Family history was unremarkable. A genetic screening using a 42-gene panel for hereditary ataxia/spastic paraparesis identified a de novo c.1438C>T - p.(Arg480Trp) missense change in the SPTBN2 gene (NM_006946.2). This variant is reported to be associated with congenital ataxia, later evolving into ataxia and intellectual disability. This case further supports the existence of a specific SPTBN2 p.(Arg480Trp)-associated phenotype, with a de novo recurrence of this variant in the heterozygous state.


Asunto(s)
Encéfalo/patología , Espectrina/genética , Ataxias Espinocerebelosas/genética , Preescolar , Femenino , Humanos , Discapacidad Intelectual , Imagen por Resonancia Magnética , Mutación Missense , Fenotipo , Espectrina/metabolismo
2.
J Hum Genet ; 64(11): 1083-1090, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31501477

RESUMEN

Primary familial brain calcification (PFBC) is a rare disease characterized by brain calcifications that mainly affect the basal ganglia, thalamus, and cerebellum. Among the four autosomal-dominant genes known to be associated with the disease, SLC20A2 pathogenic variants are the most common, accounting for up to 40% of PFBC dominant cases; variants include both point mutations, small insertions/deletions and intragenic deletions. Over the last 7 years, we have collected a group of 50 clinically diagnosed PFBC patients, who were screened for single nucleotide changes and small insertions/deletions in SLC20A2 by Sanger sequencing. We found seven pathogenic/likely pathogenic variants: four were previously described by our group, and three are reported here (c.303delG, c.21delG, and c.1795-1G>A). We developed and validated a synthetic Multiplex Ligation-dependent Probe Amplification (MLPA) assay for SLC20A2 deletions, covering all ten coding exons and the 5' UTR (SLC20A2-MLPA). Using this method, we screened a group of 43 PFBC-patients negative for point mutations and small insertions/deletions, and identified two novel intragenic deletions encompassing exon 6 NC_000008.10:g.(42297172_42302163)_(423022281_42317413)del, and exons 7-11 including the 3'UTR NC_000008.10:g.(?_42275320)_(42297172_42302163)del. Overall, SLC20A2 deletions may be highly underestimated PFBC cases, and we suggest MLPA should be included in the routine molecular test for PFBC diagnosis.


Asunto(s)
Encefalopatías/genética , Calcinosis/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Adulto , Encéfalo/fisiopatología , Encefalopatías/fisiopatología , Calcinosis/fisiopatología , Exones/genética , Humanos , Masculino , Linaje , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple/genética , Eliminación de Secuencia/genética
3.
Brain ; 142(7): 1905-1920, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31143934

RESUMEN

Allele-specific silencing by RNA interference (ASP-siRNA) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. This approach has been effectively used to target autosomal dominant mutations and single nucleotide polymorphisms linked with aberrantly expanded trinucleotide repeats. Here, we propose ASP-siRNA as a preferable choice to target duplicated disease genes, avoiding potentially harmful excessive downregulation. As a proof-of-concept, we studied autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) due to lamin B1 (LMNB1) duplication, a hereditary, progressive and fatal disorder affecting myelin in the CNS. Using a reporter system, we screened the most efficient ASP-siRNAs preferentially targeting one of the alleles at rs1051644 (average minor allele frequency: 0.45) located in the 3' untranslated region of the gene. We identified four siRNAs with a high efficacy and allele-specificity, which were tested in ADLD patient-derived fibroblasts. Three of the small interfering RNAs were highly selective for the target allele and restored both LMNB1 mRNA and protein levels close to control levels. Furthermore, small interfering RNA treatment abrogates the ADLD-specific phenotypes in fibroblasts and in two disease-relevant cellular models: murine oligodendrocytes overexpressing human LMNB1, and neurons directly reprogrammed from patients' fibroblasts. In conclusion, we demonstrated that ASP-silencing by RNA interference is a suitable and promising therapeutic option for ADLD. Moreover, our results have a broad translational value extending to several pathological conditions linked to gene-gain in copy number variations.


Asunto(s)
Alelos , Duplicación de Gen/efectos de los fármacos , Silenciador del Gen , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Lamina Tipo B/metabolismo , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Animales , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/efectos de los fármacos , Vectores Genéticos , Humanos , Lentivirus , Neuronas/metabolismo , Ratas
4.
Eur J Med Genet ; 62(11): 103578, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30445150

RESUMEN

Microphthalmia with limb anomalies (MLA, OMIM, 206920) is a rare autosomal-recessive disease caused by biallelic pathogenic variants in the SMOC1 gene. It is characterized by ocular disorders (microphtalmia or anophtalmia) and limb anomalies (oligodactyly, syndactyly, and synostosis of the 4th and 5th metacarpals), variably associated with long bone hypoplasia, horseshoe kidney, venous anomalies, vertebral anomalies, developmental delay, and intellectual disability. Here, we report the case of a woman who interrupted her pregnancy after ultrasound scans revealed a depression of the frontal bone, posterior fossa anomalies, cerebral ventricular enlargement, cleft spine involving the sacral and lower-lumbar vertebrae, and bilateral microphthalmia. Micrognathia, four fingers in both feet and a slight tibial bowing were added to the clinical picture after fetal autopsy. Exome sequencing identified two variants in the SMOC1 gene, each inherited from one of the parents: c.709G>T - p.(Glu237*) on exon 8 and c.1223G>A - p.(Cys408Tyr) on exon 11, both predicted to be pathogenic by different bioinformatics software. Brain histopathology showed an abnormal cortical neuronal migration, which could be related to the SMOC1 protein function, given its role in cellular signaling, proliferation and migration. Finally, we summarize phenotypic and genetic data of known MLA cases showing that our case has some unique features (Chiari II malformation; focal neuropathological alterations) that could be part of the variable phenotype of SMOC1-associated diseases.


Asunto(s)
Micrognatismo/genética , Microftalmía/genética , Neuronas/patología , Osteonectina/genética , Adulto , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Movimiento Celular/genética , Niño , Consanguinidad , Exones/genética , Femenino , Feto , Homocigoto , Humanos , Lactante , Deformidades Congénitas de las Extremidades , Masculino , Micrognatismo/diagnóstico , Micrognatismo/diagnóstico por imagen , Micrognatismo/fisiopatología , Microftalmía/diagnóstico por imagen , Microftalmía/fisiopatología , Mutación , Linaje , Análisis de Secuencia de ADN
5.
Neurobiol Dis ; 124: 14-28, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30389403

RESUMEN

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Ataxias Espinocerebelosas/congénito , Animales , Femenino , Técnicas de Sustitución del Gen , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mutación Missense , Células de Purkinje/fisiología , Células de Purkinje/ultraestructura , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
6.
Am J Med Genet A ; 179(2): 306-311, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30561119

RESUMEN

Greenberg skeletal dysplasia is an autosomal recessive, perinatal lethal disorder associated with biallelic variants affecting the lamin B receptor (LBR) gene. LBR is also associated with the autosomal recessive anadysplasia-like spondylometaphyseal dysplasia, and the autosomal dominant Pelger-Huët anomaly, a benign laminopathy characterized by anomalies in the nuclear shape of blood granulocytes. The LBR is an inner nuclear membrane protein that binds lamin B proteins (LMNB1 and LMNB2), interacts with chromatin, and exerts a sterol reductase activity. Here, we report on a novel LBR missense variant [c.1379A>G; p.(D460R)], identified by whole exome sequencing and causing Greenberg dysplasia in two fetuses from a consanguineous Moroccan family. We revised published LBR variants to propose a genotype-phenotype correlation in LBR associated diseases. The diverse phenotypes are correlated to the functional domain affected, the heterozygous or homozygous state of the variants, and their different impact on the residual protein function. LBR represents an instructive example of one gene presenting with two different patterns of inheritance and at least three different clinical phenotypes.


Asunto(s)
Secuenciación del Exoma , Osteocondrodisplasias/genética , Anomalía de Pelger-Huët/genética , Receptores Citoplasmáticos y Nucleares/genética , Cromatina/genética , Femenino , Feto/fisiopatología , Estudios de Asociación Genética , Homocigoto , Humanos , Lamina Tipo B/genética , Osteocondrodisplasias/fisiopatología , Anomalía de Pelger-Huët/fisiopatología , Fenotipo , Embarazo , Receptor de Lamina B
7.
J Mol Diagn ; 20(3): 289-297, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29462666

RESUMEN

Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, and 7, associated with a (CAG)n repeat expansion in coding sequences, are the most prevalent autosomal dominant ataxias worldwide (approximately 60% of the cases). In addition, the phenotype of SCA2 expansions has been now extended to Parkinson disease and amyotrophic lateral sclerosis. Their diagnosis is currently based on a PCR to identify small expanded alleles, followed by a second-level test whenever a false normal homozygous or a CAT interruption in SCA1 needs to be verified. Next-generation sequencing still does not allow efficient detection of these repeats. Here, we show the efficacy of a novel, rapid, and cost-effective method to identify and size pathogenic expansions in SCA1, 2, 3, 6, and 7 and recognize large alleles or interruptions without a second-level test. Twenty-five healthy controls and 33 expansion carriers were analyzed: alleles migrated consistently in different PCRs and capillary runs, and homozygous individuals were always distinguishable from heterozygous carriers of both common and large (>100 repeats) pathogenic CAG expansions. Repeat number could be calculated counting the number of peaks, except for the largest SCA2 and SCA7 alleles. Interruptions in SCA1 were always visible. Overall, our method allows a simpler, cost-effective, and sensibly faster SCA diagnostic protocol compared with the standard technique and to the still unadapted next-generation sequencing.


Asunto(s)
Electroforesis Capilar/métodos , Pruebas Genéticas/métodos , Reacción en Cadena de la Polimerasa/métodos , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Estudios de Casos y Controles , Heterocigoto , Homocigoto , Humanos
8.
Eur J Paediatr Neurol ; 21(3): 475-484, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28027854

RESUMEN

BACKGROUND: More than 100 X-linked intellectual disability (X-LID) genes have been identified to be involved in 10-15% of intellectual disability (ID). METHOD: To identify novel possible candidates, we selected 18 families with a male proband affected by isolated or syndromic ID. Pedigree and/or clinical presentation suggested an X-LID disorder. After exclusion of known genetic diseases, we identified seven cases whose mother showed a skewed X-inactivation (>80%) that underwent whole exome sequencing (WES, 50X average depth). RESULTS: WES allowed to solve the genetic basis in four cases, two of which (Coffin-Lowry syndrome, RPS6K3 gene; ATRX syndrome, ATRX gene) had been missed by previous clinical/genetics tests. One further ATRX case showed a complex phenotype including pontocerebellar atrophy (PCA), possibly associated to an unidentified PCA gene mutation. In a case with suspected Lujan-Fryns syndrome, a c.649C>T (p.Pro217Ser) MECP2 missense change was identified, likely explaining the neurological impairment, but not the marfanoid features, which were possibly associated to the p.Thr1020Ala variant in fibrillin 1. Finally, a c.707T>G variant (p.Phe236Cys) in the DMD gene was identified in a patient retrospectively recognized to be affected by Becker muscular dystrophy (BMD, OMIM 300376). CONCLUSION: Overall, our data show that WES may give hints to solve complex ID phenotypes with a likely X-linked transmission, and that a significant proportion of these orphan conditions might result from concomitant mutations affecting different clinically associated genes.


Asunto(s)
Exoma/genética , Discapacidad Intelectual/genética , Inactivación del Cromosoma X/genética , Adolescente , Niño , Síndrome de Coffin-Lowry/genética , Anomalías Craneofaciales/genética , Genes Ligados a X/genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Síndrome de Marfan/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Linaje , Fenotipo , Estudios Retrospectivos , Análisis de Secuencia de ADN , Talasemia alfa/genética
9.
Cytogenet Genome Res ; 147(1): 10-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26658296

RESUMEN

Karyotyping and aCGH are routinely used to identify genetic determinants of major congenital malformations (MCMs) in fetal deaths or terminations of pregnancy after prenatal diagnosis. Pathogenic rearrangements are found with a variable rate of 9-39% for aCGH. We collected 33 fetuses, 9 with a single MCM and 24 with MCMs involving 2-4 organ systems. aCGH revealed copy number variants in 14 out of 33 cases (42%). Eight were classified as pathogenic which account for a detection rate of 24% (8/33) considering fetuses with 1 or more MCMs and 33% (8/24) taking into account fetuses with multiple malformations only. Three of the pathogenic variants were known microdeletion syndromes (22q11.21 deletion, central chromosome 22q11.21 deletion, and TAR syndrome) and 5 were large rearrangements, adding up to >11 Mb per subject and comprising strong phenotype-related genes. One of those was a de novo complex rearrangement, and the remaining 4 duplications and 2 deletions were 130-900 kb in size, containing 1-7 genes, and were classified as variants of unknown clinical significance. Our study confirms aCGH as a powerful technique to ascertain the genetic etiology of fetal major congenital malformations.


Asunto(s)
Anomalías Múltiples/diagnóstico , Deleción Cromosómica , Duplicación Cromosómica , Hibridación Genómica Comparativa/estadística & datos numéricos , Variaciones en el Número de Copia de ADN , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Autopsia , Femenino , Feto , Genotipo , Humanos , Cariotipificación , Fenotipo , Embarazo , Diagnóstico Prenatal/estadística & datos numéricos
10.
J Neurol Sci ; 352(1-2): 99-104, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25873210

RESUMEN

Mutations in COL4A1, encoding one of the six collagen type IV proteins, cover a wide spectrum of autosomal dominant overlapping phenotypes including porencephaly, small-vessel disease and hemorrhagic stroke, leukoencephalopathy, hereditary angiopathy with nephropathy, aneurysms and muscle cramp (HANAC) syndrome, and Walker-Warburg syndrome. Over 50 mutations are known, mainly being missense changes. Intra- and inter-familial variability has been reported. We studied two Italian families in which the proband had a clinical diagnosis of COL4A1-related disorder. We found two novel mutations (c.1249G>C; p.Gly417Arg and c.2662G>C; p.Gly888Arg). Both involved highly conserved amino acids and were predicted as being deleterious by bioinformatics tools. The c.1249G>C (p.Gly417Arg) segregated in four subjects with variable neurological phenotypes, namely leukoencephalopathy with muscle symptoms, brain small-vessel disease, and mild infantile encephalopathy. A fourth case was a carrier of the mutation without any neurological symptoms and an MRI with a specific white matter anomaly. The c.2662G>C (p.Gly888Arg) mutation was de novo in the proband. After a temporary motor impairment at age 14, the subject complained of mild imbalance at age 30, during the third trimester of her twin pregnancy, when an anomaly of the left brain hemisphere was documented in one fetus. Both her male dizygotic twins presented a severe motor delay, early convulsions, and leukoencephalopathy, and were carriers of the mutation. In summary, we confirm that high intra-familial variability of COL4A1 mutations with very mild phenotypes, the apparent incomplete penetrance, and de novo changes may become a "dilemma" for clinicians and genetic counselors.


Asunto(s)
Encéfalo/patología , Colágeno Tipo IV/genética , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Trastornos Motores/genética , Adolescente , Adulto , Familia , Femenino , Humanos , Italia , Leucoencefalopatías/fisiopatología , Masculino , Trastornos Motores/fisiopatología , Mutación Missense , Linaje , Porencefalia , Embarazo , Arteria Retiniana/anomalías , Arteria Retiniana/fisiopatología , Hemorragia Retiniana/genética , Hemorragia Retiniana/fisiopatología , Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología
11.
Hum Mol Genet ; 24(11): 3143-54, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25701871

RESUMEN

Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (∼660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. This second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.


Asunto(s)
Elementos de Facilitación Genéticos , Lamina Tipo B/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Eliminación de Secuencia , Animales , Secuencia de Bases , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Expresión Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Lamina Tipo B/metabolismo , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje
12.
J Neurol ; 262(1): 173-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359263

RESUMEN

Autosomal recessive inherited ataxias are a growing group of genetic disorders. We report two Italian siblings presenting in their mid-50s with difficulty in walking, dysarthria and progressive cognitive decline. Visual loss, ascribed to glaucoma, manifested a few years before the other symptoms. Brain MRI showed severe cerebellar atrophy, prevalent in the vermis, with marked cortical atrophy of both hemispheres. Exome sequencing identified a novel homozygous mutation (c.935G > A;p.Ser312Asn) in the ceroid neuronal lipofuscinosis type 5 gene (CLN5). Bioinformatics predictions and in vitro studies showed that the mutation was deleterious and likely affects ER-lysosome protein trafficking. Our findings support CLN5 hypomorphic mutations cause autosomal recessive cerebellar ataxia, confirming other reports showing CLN mutations are associated with adult-onset neurodegenerative disorders. We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia.


Asunto(s)
Proteínas de la Membrana/genética , Edad de Inicio , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/fisiopatología , Consanguinidad , Femenino , Humanos , Italia , Proteínas de Membrana de los Lisosomas , Masculino , Persona de Mediana Edad , Mutación Missense , Hermanos
13.
Case Rep Genet ; 2014: 470830, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506442

RESUMEN

A recently described genetic disorder has been associated with 13q12.3 microdeletion spanning three genes, namely, KATNAL1, LINC00426, and HMGB1. Here, we report a new case with similar clinical features that we have followed from birth to 5 years old. The child carried a complex rearrangement with a double translocation: 46,XX,t(7;13)(p15;q14),t(11;15)(q23;q22). Array-CGH identified a de novo microdeletion at 13q12.2q13.1 spanning 3-3.4 Mb and overlapping 13q12.3 critical region. Clinical features resembling those reported in the literature confirm the existence of a distinct 13q12.3 microdeletion syndrome and provide further evidence that is useful to characterize its phenotypic expression during the 5 years of development.

14.
Brain ; 137(Pt 9): 2444-55, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24972706

RESUMEN

Polyglutamine-coding (CAG)n repeat expansions in seven different genes cause spinocerebellar ataxias. Although the size of the expansion is negatively correlated with age at onset, it accounts for only 50-70% of its variability. To find other factors involved in this variability, we performed a regression analysis in 1255 affected individuals with identified expansions (spinocerebellar ataxia types 1, 2, 3, 6 and 7), recruited through the European Consortium on Spinocerebellar Ataxias, to determine whether age at onset is influenced by the size of the normal allele in eight causal (CAG)n-containing genes (ATXN1-3, 6-7, 17, ATN1 and HTT). We confirmed the negative effect of the expanded allele and detected threshold effects reflected by a quadratic association between age at onset and CAG size in spinocerebellar ataxia types 1, 3 and 6. We also evidenced an interaction between the expanded and normal alleles in trans in individuals with spinocerebellar ataxia types 1, 6 and 7. Except for individuals with spinocerebellar ataxia type 1, age at onset was also influenced by other (CAG)n-containing genes: ATXN7 in spinocerebellar ataxia type 2; ATXN2, ATN1 and HTT in spinocerebellar ataxia type 3; ATXN1 and ATXN3 in spinocerebellar ataxia type 6; and ATXN3 and TBP in spinocerebellar ataxia type 7. This suggests that there are biological relationships among these genes. The results were partially replicated in four independent populations representing 460 Caucasians and 216 Asian samples; the differences are possibly explained by ethnic or geographical differences. As the variability in age at onset is not completely explained by the effects of the causative and modifier sister genes, other genetic or environmental factors must also play a role in these diseases.


Asunto(s)
Pueblo Asiatico/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Población Blanca/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Pueblo Asiatico/etnología , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ataxias Espinocerebelosas/etnología , Población Blanca/etnología , Adulto Joven
15.
BMC Med Genomics ; 6: 22, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23777634

RESUMEN

BACKGROUND: SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age. METHODS: Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.0 Arrays and data were validated by real-time PCR. RESULTS: We found 66 genes whose expression was statistically different in SCA28 LCLs, 35 of which were up-regulated and 31 down-regulated. The differentially expressed genes were clustered in five functional categories: (1) regulation of cell proliferation; (2) regulation of programmed cell death; (3) response to oxidative stress; (4) cell adhesion, and (5) chemical homeostasis. To validate these data, we performed functional experiments that proved an impaired SCA28 LCLs growth compared to controls (p < 0.005), an increased number of cells in the G0/G1 phase (p < 0.001), and an increased mortality because of apoptosis (p < 0.05). We also showed that respiratory chain activity and reactive oxygen species levels was not altered, although lipid peroxidation in SCA28 LCLs was increased in basal conditions (p < 0.05). We did not detect mitochondrial DNA large deletions. An increase of TFAM, a crucial protein for mtDNA maintenance, and of DRP1, a key regulator of mitochondrial dynamic mechanism, suggested an alteration of fission/fusion pathways. CONCLUSIONS: Whole genome expression profiling, performed on SCA28 LCLs, allowed us to identify five altered functional categories that characterize the SCA28 LCLs phenotype, the first reported in human cells to our knowledge.


Asunto(s)
Apoptosis/genética , Proliferación Celular , Genoma Humano , Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Dinaminas , Puntos de Control de la Fase G1 del Ciclo Celular , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica , Humanos , Peroxidación de Lípido , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fenotipo , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/metabolismo , Factores de Transcripción/metabolismo
16.
J Med Genet ; 50(8): 543-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749989

RESUMEN

BACKGROUND AND AIM: We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. METHODS AND RESULTS: Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C.elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. CONCLUSION: We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia.


Asunto(s)
Cerebelo/anomalías , Cromosomas Humanos Par 8/genética , Quinasa 1 de Adhesión Focal/genética , Malformaciones del Sistema Nervioso/genética , Trastornos Psicomotores/genética , Proteínas de Unión al ARN/genética , Translocación Genética , Animales , Caenorhabditis elegans/genética , Línea Celular Transformada , Niño , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Femenino , Fusión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Malformaciones del Sistema Nervioso/complicaciones , Trastornos Psicomotores/complicaciones , Ratas
17.
Hum Mutat ; 34(8): 1160-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23649844

RESUMEN

Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients' fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels.


Asunto(s)
Duplicación de Gen , Lamina Tipo B/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Adulto , Secuencia de Bases , Puntos de Rotura del Cromosoma , Hibridación Genómica Comparativa , ADN/química , ADN/genética , Humanos , Lamina Tipo B/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Enfermedad de Pelizaeus-Merzbacher/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Reprod Biomed Online ; 26(2): 148-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23273756

RESUMEN

This paper reports a case of recurrent miscarriage in a patient affected by a variant phenotype of sperm macrocephaly syndrome (SMS). SMS is usually related to specific sperm characteristics (large head, multiple tail) and homozygous mutations in the aurora kinase C gene (AURKC). However, the present case observed large-headed spermatozoa with no flagellar abnormalities and no mutations detectable by AURKC sequencing. Furthermore, the patient had repeatedly conceived by intracytoplasmic sperm injection, but pregnancy always aborted. This study performed morphological analysis (Papanicolau staining), annexin V/propidium iodide staining, sperm chromatin structure assay (SCSA), fluorescence in-situ hybridization (FISH) and transmission electron microscopy. This study observed large-headed, mono-tailed, mono-centriolar spermatozoa characterized by abnormal chromatin and swollen mitochondria. SCSA revealed a high ratio of late apoptotic cells with fairly intact amount of DNA. The FISH analysis showed 100% disomy rate. As far as is known, this is the first study to include gene sequencing, TEM, cytogenetic analysis and sperm DNA fragmentation in a case of SMS and also to report recurrent miscarriage related to this specific condition. SMS may be associated with important abnormalities of the sperm subcellular structure and with disomy even in the absence of mutations in the AURKC coding sequence. Sperm macrocephaly syndrome (SMS) is a rare condition that affects spermatozoa and is related to infertility. It is characterized by a specific phenotype of large-headed, multi-tailed spermatozoa with an abnormal chromosomal status. A very few pregnancies have been obtained so far in SMS patients by means of IVF procedures. We present a case of SMS that differs from the classical syndrome as we observed large-headed spermatozoa without tail abnormalities. The affected patient had achieved three pregnancies following IVF, but all aborted. We carried out a detailed examination of the patient's spermatozoa - morphological, cytogenetic, DNA fragmentation and ultrastructural analysis - and we observed that his spermatozoa are characterized by a large head whose texture appears apoptotic, a single tail and a midpiece whose mitochondria appear swollen. The DNA content within the spermatozoa was altered, as well as the chromosomal status, suggesting that some error must have occurred during spermatogenesis. Interestingly, the genetic sequencing of the specific gene usually related to SMS syndrome (AURKC) revealed no mutations in our patient, suggesting that other genes may be involved in determining this syndrome. As far as is known, this is the first study in which spermatozoa of a SMS patient have been observed using morphological analysis, ultrastructural analysis, cytogenetic analysis and sperm DNA fragmentation analysis together. Moreover, it is believed that this is first report of recurrent miscarriage due to this specific syndrome.


Asunto(s)
Aborto Habitual/etiología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Proteínas Serina-Treonina Quinasas/genética , Espermatozoides/anomalías , Adulto , Aurora Quinasa C , Aurora Quinasas , Análisis Mutacional de ADN , Femenino , Humanos , Hibridación Fluorescente in Situ , Infertilidad Masculina/complicaciones , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Mutación , Embarazo , Espermatozoides/ultraestructura , Síndrome
19.
Neurogenetics ; 13(3): 205-14, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22552818

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts is an autosomal recessive disease characterized by early onset macrocephaly; developmental delay; motor disability in the form of progressive spasticity and ataxia; seizures; cognitive decline; and characteristic magnetic resonance imaging findings. Mutations in two genes, MLC1 (22q13.33; 75 % of patients) or HEPACAM (11q24; 20 % of patients), are associated with the disease. We describe an adult MLC patient with moderate clinical symptoms. MLC1 cDNA analysis from lymphoblasts showed a strong transcript reduction and identified a 246-bp pseudoexon containing a premature stop codon between exons 10 and 11, due to a homozygous c.895-226 T>G deep-intronic mutation. This category of mutations is often overlooked, being outside of canonically sequenced genomic regions. The mutation c.895-226 T>G has a leaky effect on splicing leaving part of the full-length transcript. Its role on splicing was confirmed using a minigene assay and an antisense morpholinated oligonucleotide targeted to the aberrant splice site in vitro, which partially abrogated the mutation effect.


Asunto(s)
Quistes/diagnóstico , Quistes/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Intrones , Proteínas de la Membrana/genética , Mutación , Oligonucleótidos Antisentido/genética , Encéfalo/patología , Análisis Mutacional de ADN , Exones , Salud de la Familia , Femenino , Humanos , Linfocitos/citología , Imagen por Resonancia Magnética/métodos , Masculino , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Modelos Genéticos , Linaje , Empalme del ARN , Análisis de Secuencia de ADN
20.
Biol Proced Online ; 13: 10, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22035318

RESUMEN

In the preparation of transgenic murine ES cells it is important to verify the construct has a single insertion, because an ectopic neomycin phosphortransferase positive selection cassette (NEO) may cause a position effect. During a recent work, where a knockin SCA28 mouse was prepared, we developed two assays based on Real-Time PCR using both SYBR Green and specific minor groove binder (MGB) probes to evaluate the copies of NEO using the comparative delta-delta Ct method versus the Rpp30 reference gene.We compared the results from Southern blot, routinely used to quantify NEO copies, with the two Real-Time PCR assays. Twenty-two clones containing the single NEO copy showed values of 0.98 ± 0.24 (mean ± 2 S.D.), and were clearly distinguishable from clones with two or more NEO copies.This method was found to be useful, easy, sensitive and fast and could substitute for the widely used, but laborious Southern blot method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...