Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 35(20): 6862-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17933776

RESUMEN

Gene expression is controlled by RNA-binding proteins that modulate the synthesis, processing, transport and stability of various classes of RNA. Some RNA-binding proteins shuttle between the nucleus and cytoplasm and are thought to bind to RNA transcripts in the nucleus and remain bound during translocation to the cytoplasm. One RNA-binding protein that has been hypothesized to function in this manner is the Saccharomyces cerevisiae Scp160 protein. Although the steady-state localization of Scp160 is cytoplasmic, previous studies have identified putative nuclear localization (NLS) and nuclear export (NES) signals. The goal of this study was to test the hypothesis that Scp160 is a nucleocytoplasmic shuttling protein. We exploited a variety of yeast export mutants to capture any potential nuclear accumulation of Scp160 and found no evidence that Scp160 enters the nucleus. These localization studies were complemented by a mutational analysis of the predicted NLS. Results indicate that key basic residues within the predicted NLS of Scp160 can be altered without severely affecting Scp160 function. This finding has important implications for understanding the function of Scp160, which is likely limited to the cytoplasm. Additionally, our results provide strong evidence that the presence of a predicted nuclear localization signal within the sequence of a protein should not lead to the assumption that the protein enters the nucleus in the absence of additional experimental evidence.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Señales de Localización Nuclear/análisis , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 35(4): 1108-18, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17264125

RESUMEN

The K homology (KH) domain is a remarkably versatile and highly conserved RNA-binding motif. Classical KH domains include a characteristic pattern of hydrophobic residues, a Gly-X-X-Gly (GXXG) segment, and a variable loop. KH domains typically occur in clusters, with some retaining their GXXG sequence (conserved), while others do not (diverged). As a first step towards addressing whether GXXG is essential for KH-domain function, we explored the roles of conserved and diverged KH domains in Scp160p, a multiple-KH-domain-containing protein in Saccharomyces cerevisiae. We specifically wanted to know (1) whether diverged KH domains were essential for Scp160p function, and (2) whether diverged KH domains could functionally replace conserved KH domains. To address these questions, we deleted and/or interchanged conserved and diverged KH domains of Scp160p and expressed the mutated alleles in yeast. Our results demonstrated that the answer to each question was yes. Both conserved and diverged KH domains are essential for Scp160p function, and diverged KH domains can function in place of conserved KH domains. These findings challenge the prevailing notions about the requisite features of a KH domain and raise the possibility that there may be more functional KH domains in the proteome than previously appreciated.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Secuencia Conservada , Variación Genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopéptidos , Péptidos/genética , Polirribosomas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 32(16): 4768-75, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15356294

RESUMEN

Scp160p is a 160 kDa RNA-binding protein in yeast previously demonstrated to associate with specific messages as an mRNP component of both soluble and membrane-bound polyribosomes. Although the vast majority of Scp160p sequence consists of 14 closely spaced KH domains, comparative sequence analyses also demonstrate the presence of a potential nuclear localization sequence located between KH domains 3 and 4, as well as a 110 amino acid non-KH N-terminal region that includes a potential nuclear export sequence (NES). As a step toward investigating the structure/function relationships of Scp160p, we generated two truncated alleles, FLAG.SCP160DeltaN1, encoding a protein product that lacks the first 74 amino acids, including the potential NES, and FLAG.SCP160DeltaC1, encoding a protein product that lacks the final KH domain (KH14). We report here that the N-truncated protein, expressed as a green fluorescent protein fusion in yeast, remains cytoplasmic, with no apparent nuclear accumulation. Biochemical studies further demonstrate that although the N-truncated protein remains competent to form RNPs, the C-truncated protein does not. Furthermore, polyribosome association is severely compromised for both truncated proteins. Perhaps most important, both truncated alleles appear only marginally functional in vivo, as demonstrated by the inability of each to complement scp160/eap1 synthetic lethality in a tester strain. Together, these data challenge the notion that Scp160p normally shuttles between the nucleus and cytoplasm, and further implicate polyribosome association as an essential component of Scp160p function in vivo. Finally, these data underscore the vital roles of both KH and non-KH domain sequences in Scp160p.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Polirribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Aminoácidos , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA