Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236205

RESUMEN

Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Optogenética , Músculo Esquelético , Parálisis , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad
2.
Artículo en Inglés | MEDLINE | ID: mdl-37489926

RESUMEN

Objective: Previously, we demonstrated that Amyloid Precursor Protein (APP) contributes to pathology in the SOD1G93A mouse model of ALS and that genetic ablation of APP in SOD1G93A mice significantly improved multiple disease parameters, including muscle innervation and motor neuron survival. We also observed elevated levels of potentially neurotoxic Aß peptides that have been implicated in Alzheimer's Disease (AD) pathogenesis, within motor neurons and astrocytes in SOD1G93A mice. More recently, it has been shown that blocking Aß production improves outcome measures in SOD1G93A mice. The cyclodextrin, (2-Hydroxypropyl)-ß-cyclodextrin (HP-ß-CD), has previously been shown to deplete intraneuronal unesterified cholesterol, resulting in effective reduction of Aß production and amelioration of disease progression in mouse models of AD and Niemann Pick Type C (NPC) disease. Here, we tested whether HP-ß-CD could also improve phenotypic progression in SOD1G93A mice. Methods: Pre-symptomatic male SOD1G93A mice were randomly assigned to the following treatment groups: HP-ß-CD (4000mg/kg, n = 9) or vehicle (saline; n = 10), delivered by weekly subcutaneous injection, commencing at 67 days of age. Longitudinal grip-strength and body mass analysis was performed until late-stage disease (120 days of age), followed by in vivo bilateral isometric muscle tension analysis of tibialis anterior (TA) and extensor digitorum longus (EDL) muscles. Results: HP-ß-CD administration had no effect on body mass or grip-strength compared to vehicle treated SOD1G93A mice. Similarly, HP-ß-CD treatment had no effect on muscle force, contractile properties or motor unit number estimates (MUNE) at late-stage disease in SOD1G93A mice. Conclusion: This study shows that HP-ß-CD does not confer any therapeutic benefit in SOD1G93A mice. However, the absence of detrimental effects is informative, given the common use of cyclodextrins as complexing agents for other pharmaceutical products, their standalone therapeutic potential and the emerging association between dyslipidaemia and ALS progression.

3.
Curr Opin Biotechnol ; 40: 75-81, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27016703

RESUMEN

Controlling muscle function is essential for human behaviour and survival, thus, impairment of motor function and muscle paralysis can severely impact quality of life and may be immediately life-threatening, as occurs in many cases of traumatic spinal cord injury (SCI) and in patients with amyotrophic lateral sclerosis (ALS). Repairing damaged spinal motor circuits, in either SCI or ALS, currently remains an elusive goal. Therefore alternative strategies are needed to artificially control muscle function and thereby enable essential motor tasks. This review focuses on recent advances towards restoring motor function, with a particular focus on stem cell-derived neuronal engraftment strategies, optogenetic control of motor function and the potential future translational application of these approaches.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Actividad Motora/fisiología , Células-Madre Neurales/trasplante , Optogenética/métodos , Recuperación de la Función , Traumatismos de la Médula Espinal/terapia , Animales , Humanos
4.
Science ; 346(6213): 1118-23, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430769

RESUMEN

Tetanus neurotoxin (TeNT) is among the most poisonous substances on Earth and a major cause of neonatal death in nonvaccinated areas. TeNT targets the neuromuscular junction (NMJ) with high affinity, yet the nature of the TeNT receptor complex remains unknown. Here, we show that the presence of nidogens (also known as entactins) at the NMJ is the main determinant for TeNT binding. Inhibition of the TeNT-nidogen interaction by using small nidogen-derived peptides or genetic ablation of nidogens prevented the binding of TeNT to neurons and protected mice from TeNT-induced spastic paralysis. Our findings demonstrate the direct involvement of an extracellular matrix protein as a receptor for TeNT at the NMJ, paving the way for the development of therapeutics for the prevention of tetanus by targeting this protein-protein interaction.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Metaloendopeptidasas/uso terapéutico , Neuronas Motoras/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Toxina Tetánica/uso terapéutico , Tétanos/prevención & control , Animales , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/química , Ratones , Ratones Endogámicos , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Péptidos/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Toxina Tetánica/antagonistas & inhibidores , Toxina Tetánica/química
5.
Science ; 344(6179): 94-7, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24700859

RESUMEN

Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.


Asunto(s)
Luz , Neuronas Motoras/fisiología , Neuronas Motoras/trasplante , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Optogenética , Animales , Axones/fisiología , Línea Celular , Channelrhodopsins , Estimulación Eléctrica , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Miembro Posterior , Contracción Isométrica , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Desnervación Muscular , Fibras Musculares Esqueléticas/fisiología , Regeneración Nerviosa , Nervio Ciático/fisiología , Transfección , Transgenes
6.
Hum Mol Genet ; 21(17): 3871-82, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22678056

RESUMEN

In amyotrophic lateral sclerosis (ALS), the progressive loss of motor neurons is accompanied by extensive muscle denervation, resulting in paralysis and ultimately death. Upregulation of amyloid beta (A4) precursor protein (APP) in muscle fibres coincides with symptom onset in both sporadic ALS patients and the SOD1(G93A) mouse model of familial ALS. We have further characterized this response in SOD1(G93A) mice and also revealed elevated levels of ß-amyloid (Aß) peptides in the SOD1(G93A) spinal cord, which were predominantly localized within motor neurons and their surrounding glial cells. We therefore examined the effect of genetic ablation of APP on disease progression in SOD1(G93A) mice, which significantly improved multiple disease parameters, including innervation, motor function, muscle contractile characteristics, motor unit and motor neuron survival. These results therefore strongly suggest that APP actively contributes to SOD1(G93A)-mediated pathology. Together with observations from ALS cases, this study indicates that APP may contribute to human ALS pathology.


Asunto(s)
Sustitución de Aminoácidos/genética , Precursor de Proteína beta-Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Atrofia , Peso Corporal , Supervivencia Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Humanos , Longevidad , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Desnervación Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Procesamiento Proteico-Postraduccional , Solubilidad , Médula Espinal/patología , Médula Espinal/fisiopatología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Regulación hacia Arriba
7.
Dev Neurobiol ; 70(11): 781-94, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20629048

RESUMEN

The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin-B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin-B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin-B2, we utilized time-lapse imaging to characterize the effects of ephrin-B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin-B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally-projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally-projecting ventronasal axons are less sensitive to ephrin-B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general.


Asunto(s)
Axones/ultraestructura , Efrina-B2/metabolismo , Conos de Crecimiento/ultraestructura , Retina/embriología , Células Ganglionares de la Retina/ultraestructura , Animales , Axones/metabolismo , Embrión de Mamíferos , Conos de Crecimiento/metabolismo , Ratones , Técnicas de Cultivo de Órganos , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
8.
J Neurosci ; 30(2): 739-48, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071539

RESUMEN

An ideal therapeutic for stroke or spinal cord injury should promote survival and regeneration in the CNS. Arginase 1 (Arg1) has been shown to protect motor neurons from trophic factor deprivation and allow sensory neurons to overcome neurite outgrowth inhibition by myelin proteins. To identify small molecules that capture Arg1's protective and regenerative properties, we screened a hippocampal cell line stably expressing the proximal promoter region of the arginase 1 gene fused to a reporter gene against a library of compounds containing clinically approved drugs. This screen identified daidzein as a transcriptional inducer of Arg1. Both CNS and PNS neurons primed in vitro with daidzein overcame neurite outgrowth inhibition from myelin-associated glycoprotein, which was mirrored by acutely dissociated and cultured sensory neurons primed in vivo by intrathecal or subcutaneous daidzein infusion. Further, daidzein was effective in promoting axonal regeneration in vivo in an optic nerve crush model when given intraocularly without lens damage, or most importantly, when given subcutaneously after injury. Mechanistically, daidzein requires transcription and induction of Arg1 activity for its ability to overcome myelin inhibition. In contrast to canonical Arg1 activators, daidzein increases Arg1 without increasing CREB phosphorylation, suggesting its effects are cAMP-independent. Accordingly, it may circumvent known CNS side effects of some cAMP modulators. Indeed, daidzein appears to be safe as it has been widely consumed in soy products, crosses the blood-brain barrier, and is effective without pretreatment, making it an ideal candidate for development as a therapeutic for spinal cord injury or stroke.


Asunto(s)
Arginasa/genética , AMP Cíclico/metabolismo , Isoflavonas/farmacología , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Regiones Promotoras Genéticas/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Arginasa/metabolismo , Células CHO , Células Cultivadas , Cerebelo/citología , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteína GAP-43/metabolismo , Ganglios Espinales/citología , Ensayos Analíticos de Alto Rendimiento/métodos , Hipocampo/citología , Masculino , Glicoproteína Asociada a Mielina/farmacología , Regeneración Nerviosa/fisiología , Neuronas/citología , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/patología , Estrés Oxidativo/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Bibliotecas de Moléculas Pequeñas
9.
PLoS One ; 4(7): e6218, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19593442

RESUMEN

BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+) mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+) mice to two other mutants: the TgSOD1(G93A) model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa)) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+);Gars(C201R/+) double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R) mutation significantly delayed disease onset in the SOD1(G93A);Gars(C201R/+) double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.


Asunto(s)
Dineínas/fisiología , Glicina-ARNt Ligasa/metabolismo , Enfermedad de la Neurona Motora/enzimología , Mutación , Superóxido Dismutasa/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Modelos Animales de Enfermedad , Dineínas/genética , Femenino , Glicina-ARNt Ligasa/genética , Heterocigoto , Masculino , Ratones , Ratones Mutantes , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Fenotipo , Superóxido Dismutasa/genética
10.
J Neurosci ; 29(30): 9545-52, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19641117

RESUMEN

Adult spinal axons do not spontaneously regenerate after injury. However, if the peripheral branch of dorsal root ganglion neurons is lesioned before lesioning the central branch of the same neurons in the dorsal column, these central axons will regenerate and, if cultured, are not inhibited from extending neurites by myelin-associated inhibitors of regeneration such as myelin-associated glycoprotein (MAG). This effect can be mimicked by elevating cAMP and is transcription dependent. The ability of cAMP to overcome inhibition by MAG in culture involves the upregulation of the enzyme arginase I (Arg I) and subsequent increase in synthesis of polyamines such as putrescine. Now we show that a peripheral lesion also induces an increase in Arg I expression and synthesis of polyamines. We also show that the conditioning lesion effect in overcoming inhibition by MAG is initially dependent on ongoing polyamine synthesis but, with time after lesion, becomes independent of ongoing synthesis. However, if synthesis of polyamines is blocked in vivo the early phase of good growth after a conditioning lesion is completely blocked and the later phase of growth, when ongoing polyamine synthesis is not required during culture, is attenuated. We also show that putrescine must be converted to spermidine both in culture and in vivo to overcome inhibition by MAG and that spermidine can promote optic nerve regeneration in vivo. These results suggest that spermidine could be a useful tool in promoting CNS axon regeneration after injury.


Asunto(s)
Arginasa/metabolismo , Axones/fisiología , Regeneración Nerviosa/fisiología , Espermidina/metabolismo , Animales , Axones/enzimología , Células Cultivadas , Ganglios Espinales/enzimología , Ganglios Espinales/fisiología , Masculino , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Compresión Nerviosa , Neuronas/enzimología , Neuronas/fisiología , Nervio Óptico/enzimología , Nervio Óptico/fisiología , Traumatismos del Nervio Óptico/enzimología , Traumatismos del Nervio Óptico/fisiopatología , Poliaminas/metabolismo , Putrescina/metabolismo , Ratas , Ratas Endogámicas F344 , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
11.
J Neurosci ; 27(34): 9146-54, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17715351

RESUMEN

Myelin-associated glycoprotein (MAG) is a potent inhibitor of axonal regeneration. It contains five Ig-like domains and is a sialic binding protein. Previously, we showed that the sialic acid binding site on MAG maps to arginine 118 in Ig domain 1 (Kelm et al., 1994). However, sialic acid binding was neither necessary nor sufficient for MAG to bring about inhibition of neurite outgrowth. Consistent with this, we now map a distinct inhibition site on MAG to Ig domain 5 (Ig-5). We show that when a truncated form of MAG missing Ig domains 1 and 2 is expressed by Chinese hamster ovary (CHO) cells, it does not bind sialic acid, but still inhibits neurite outgrowth almost as effectively as full-length MAG. To determine whether the inhibition site mapped to Ig-3, Ig-4, or Ig-5, we made chimeric molecules of various combinations of these three MAG Ig domains fused to Ig domains from another Ig family member, sialoadhesin (Sn), which also binds to sialic acid in the same linkage as MAG. The MAG-Sn molecules were expressed in CHO cells and all contained five Ig domains and were able to bind sialic acid. However, only the chimeric molecules containing MAG Ig-5 inhibited neurite outgrowth. Furthermore, peptides corresponding to sequences in MAG Ig-5, but not Ig-4 or Sn Ig-5, are able to block inhibition of neurite outgrowth by both wild-type MAG and CNS myelin. We conclude that the inhibition site on MAG is carried by Ig domain 5 and that this site is distinct from the sialic-acid binding site.


Asunto(s)
Eritrocitos/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Células CHO/citología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Cricetinae , Cricetulus , Humanos , Mutagénesis/fisiología , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/química , Glicoproteína Asociada a Mielina/genética , Ácido N-Acetilneuramínico/química , Neuritis/metabolismo , Estructura Terciaria de Proteína , Ratas , Transfección
12.
J Neurosci ; 26(20): 5565-73, 2006 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-16707807

RESUMEN

Lesioning the peripheral branch of a dorsal root ganglion (DRG) neuron before injury of the central branch of the same neuron enables spontaneous regeneration of these spinal axons. This effect is cAMP and transcription dependent. Here, we show that the cytokine interleukin-6 (IL-6) is upregulated in DRG neurons after either a conditioning lesion or treatment with dibutyryl-cAMP. In culture, IL-6 allows neurons to grow in the presence of inhibitors of regeneration present in myelin. Importantly, intrathecal delivery of IL-6 to DRG neurons blocks inhibition by myelin both in vitro and in vivo, effectively mimicking the conditioning lesion. Blocking IL-6 signaling has no effect on the ability of cAMP to overcome myelin inhibitors. Consistent with this, IL-6-deficient mice respond to a conditioning lesion as effectively as wild-type mice. We conclude that IL-6 can mimic both the cAMP effect and the conditioning lesion effect but is not an essential component of either response.


Asunto(s)
Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Interleucina-6/metabolismo , Regeneración Nerviosa/fisiología , Neuronas Aferentes/metabolismo , Traumatismos de los Nervios Periféricos , Nervios Periféricos/metabolismo , Animales , Animales Recién Nacidos , Bucladesina/farmacología , Células CHO , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/metabolismo , Interleucina-6/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Nervios Periféricos/citología , Ratas , Ratas Long-Evans , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/metabolismo , Neuropatía Ciática/fisiopatología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
13.
Neuron ; 44(4): 609-21, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15541310

RESUMEN

Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB) to overcome myelin inhibitors; a dominant-negative CREB abolishes the effect, and neurons expressing a constitutively active form of CREB are not inhibited. Activation of CREB is also required for cAMP to upregulate Arg I, and the ability of constitutively active CREB to overcome inhibition is blocked by an inhibitor of polyamine synthesis. Finally, expression of constitutively active CREB in DRG neurons is sufficient to promote regeneration of subsequently lesioned dorsal column axons. These results indicate that CREB plays a central role in overcoming myelin inhibitors and so encourages regeneration in vivo.


Asunto(s)
Axones/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Animales , Arginasa/metabolismo , Axones/patología , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , AMP Cíclico/metabolismo , Ganglios Espinales/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Glicoproteína Asociada a Mielina/metabolismo , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...