Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125358

RESUMEN

Exercise-induced inflammation can influence iron metabolism. Conversely, the effects of vitamin D3, which possesses anti-inflammatory properties, on ultramarathon-induced heart damage and changes in iron metabolism have not been investigated. Thirty-five healthy long-distance semi-amateur runners were divided into two groups: one group received 150,000 IU of vitamin D3 24 h prior to a race (n = 16), while the other group received a placebo (n = 19). Serum iron, hepcidin (HPC), ferritin (FER), erythroferrone (ERFE), erythropoietin (EPO), neopterin (NPT), and cardiac troponin T (cTnT) levels were assessed. A considerable effect of ultramarathon running on all examined biochemical markers was observed, with a significant rise in serum levels of ERFE, EPO, HPC, NPT, and cTnT detected immediately post-race, irrespective of the group factor. Vitamin D3 supplementation showed a notable interaction with the UM, specifically in EPO and cTnT, with no other additional changes in the other analysed markers. In addition to the correlation between baseline FER and post-run ERFE, HPC was modified by vitamin D. The ultramarathon significantly influenced the EPO/ERFE/HPC axis; however, a single substantial dose of vitamin D3 had an effect only on EPO, which was associated with the lower heart damage marker cTnT after the run.


Asunto(s)
Biomarcadores , Colecalciferol , Suplementos Dietéticos , Hierro , Carrera de Maratón , Humanos , Colecalciferol/administración & dosificación , Método Doble Ciego , Masculino , Hierro/sangre , Hierro/administración & dosificación , Adulto , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Carrera/fisiología , Hepcidinas/sangre , Troponina T/sangre , Cardiopatías/prevención & control , Cardiopatías/etiología , Eritropoyetina/sangre , Eritropoyetina/administración & dosificación
2.
Antioxidants (Basel) ; 13(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39061829

RESUMEN

Researchers have studied the effects of exercise on serum methyl-arginine and vitamin D metabolites; however, the effects of exercise combined with antioxidants are not well documented. Since oxidative stress affects the metabolism of vitamin D and methyl-arginine, we hypothesised that the antioxidant coenzyme Q10 (CoQ10) might modulate exercise-induced changes. A group of twenty-eight healthy men participated in this study and were divided into two groups: an experimental group and a control group. The exercise test was performed until exhaustion, with gradually increasing intensity, before and after the 21-day CoQ10 supplementation. Blood samples were collected before, immediately after, and 3 and 24 h after exercise. CoQ10, vitamin D metabolites, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, methylarginine, dimethylamine, arginine, citrulline, and ornithine were analysed in serum samples. CoQ10 supplementation caused a 2.76-fold increase in the concentration of serum CoQ10. Conversely, the 25(OH)D3 concentration increased after exercise only in the placebo group. ADMA increased after exercise before supplementation, but a decrease was observed in the CoQ10 supplementation group 24 h after exercise. In conclusion, our data indicate that CoQ10 supplementation modifies the effects of exercise on vitamin D and methyl-arginine metabolism, suggesting its beneficial effects. These findings contribute to the understanding of how antioxidants like CoQ10 can modulate biochemical responses to exercise, potentially offering new insights for enhancing athletic performance and recovery.

3.
Front Physiol ; 15: 1383141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077758

RESUMEN

Introduction: Artistic gymnastics is one of the most demanding sports disciplines, with the athletes demonstrating extremely high levels of explosive power and strength. Currently, knowledge of the effect of gymnastic training adaptation on exercise-induced inflammatory response is limited. The study aimed to evaluate inflammatory response following lower- and upper-body high-intensity exercise in relation to the iron status in gymnasts and non-athletes. Methods: Fourteen elite male artistic gymnasts (EAG, 20.6 ± 3.3 years old) and 14 physically active men (PAM, 19.9 ± 1.0 years old) participated in the study. Venous blood samples were taken before and 5 min and 60 min after two variants of Wingate anaerobic test (WAnT), upper-body and lower-body WAnT. Basal iron metabolism (serum iron and ferritin) and acute responses of selected inflammatory response markers [interleukin (IL) 6, IL-10, and tumour necrosis factor α] were analysed. Results: EAG performed significantly better during upper-body WAnT than PAM regarding relative mean and peak power. The increase in IL-6 levels after upper-body WAnT was higher in EAG than in PAM; the opposite was observed after lower-body WAnT. IL-10 levels were higher in EAG than in PAM, and tumour necrosis factor α levels were higher in PAM than those in EAG only after lower-body WAnT. The changes in IL-10 correlated with baseline serum iron and ferritin in PAM. Discussion: Overall, gymnastic training is associated with the attenuation of iron-dependent post-exercise anti-inflammatory cytokine secretion.

4.
Nutrients ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630726

RESUMEN

Exercise affects serum levels of amino acids and their metabolites, with important metabolic consequences. Since vitamin D impacts skeletal muscle protein degradation, we hypothesised that it would also impact exercise-induced changes in serum amino acid levels and the serum levels of arginine metabolites, influencing the body's ability to synthesise NO. Accordingly, we analysed the effect of a single high-dose vitamin D supplementation on the serum levels of various amino acids in ultramarathon runners. Thirty-five male amateur runners were assigned to the supplemented group, administered 150,000 IU vitamin D in vegetable oil 24 h before the run (n = 16), or the control (placebo) group (n = 19). Blood was sampled 24 h before, immediately after, and 24 h after the run. Changes in the serum levels of some amino acids were distinct in the two groups. The asymmetric dimethyl arginine levels were significantly decreased immediately after the run and increased 24 h later and were not affected by the supplementation. The symmetric dimethyl arginine levels were increased after the run in both groups but were lower in the supplemented group than in the placebo group 24 h after the run. The dimethylamine levels increased significantly in the supplemented group as compared to the placebo group. In conclusion, vitamin D impacts exercise-induced changes in serum amino acids and methylated arginine metabolites.


Asunto(s)
Arginina , Triptófano , Humanos , Masculino , Aminoácidos , Aminoácidos de Cadena Ramificada , Suplementos Dietéticos , Vitamina D , Vitaminas
5.
Nutrients ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364748

RESUMEN

In humans, most free tryptophan is degraded via kynurenine pathways into kynurenines. Kynurenines modulate the immune system, central nervous system, and skeletal muscle bioenergetics. Consequently, kynurenine pathway metabolites (KPMs) have been studied in the context of exercise. However, the effect of vitamin D supplementation on exercise-induced changes in KPMs has not been investigated. Here, we analyzed the effect of a single high-dose vitamin D supplementation on KPMs and tryptophan levels in runners after an ultramarathon. In the study, 35 amateur runners were assigned into two groups: vitamin D supplementation group, administered 150,000 IU vitamin D in vegetable oil 24 h before the run (n = 16); and control (placebo) group (n = 19). Blood was collected for analysis 24 h before, immediately after, and 24 h after the run. Kynurenic, xanthurenic, quinolinic, and picolinic acids levels were significantly increased after the run in the control group, but the effect was blunted by vitamin D supplementation. Conversely, the decrease in serum tryptophan, tyrosine, and phenylalanine levels immediately after the run was more pronounced in the supplemented group than in the control. The 3-hydroxy-l-kynurenine levels were significantly increased in both groups after the run. We conclude that vitamin D supplementation affects ultramarathon-induced changes in tryptophan metabolism.


Asunto(s)
Quinurenina , Triptófano , Humanos , Sistema Nervioso Central/metabolismo , Suplementos Dietéticos , Quinurenina/metabolismo , Triptófano/metabolismo , Vitamina D
6.
Artículo en Inglés | MEDLINE | ID: mdl-35886639

RESUMEN

Human adipocytes release multiple adipokines into the bloodstream during physical activity. This affects many organs and might contribute to the induction of inflammation. In this study, we aimed to assess changes in circulating adipokine levels induced by intense aerobic and anaerobic exercise in individuals with different adipose tissue content. In the quasi-experimental study, 48 male volunteers (aged 21.78 ± 1.98 years) were assigned to groups depending on their body fat content (BF): LBF, low body fat (<8% BF, n = 16); MBF, moderate body fat (8−14% BF, n = 19); and HBF, high body fat (>14% BF, n = 13). The volunteers performed maximal aerobic effort (MAE) and maximal anaerobic effort (MAnE) exercises. Blood samples were collected at five timepoints: before exercise, immediately after, 2 h, 6 h, and 24 h after each exercise. The selected cytokines were analyzed: adiponectin, follistatin-like 1, interleukin 6, leptin, oncostatin M, and resistin. While the participants' MAnE and MAE performance were similar regardless of BF, the cytokine response of the HBF group was different from that of the others. Six hours after exercise, leptin levels in the HBF group increased by 35%. Further, immediately after MAnE, resistin levels in the HBF group also increased, by approximately 55%. The effect of different BF was not apparent for other cytokines. We conclude that the adipokine exercise response is associated with the amount of adipose tissue and is related to exercise type.


Asunto(s)
Adipoquinas , Tejido Adiposo , Adipoquinas/sangre , Adiponectina , Tejido Adiposo/fisiología , Citocinas , Ejercicio Físico/fisiología , Humanos , Leptina , Masculino , Resistina
7.
Front Physiol ; 12: 731889, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552508

RESUMEN

Clinical studies continue to provide evidence of organ protection by remote ischemic preconditioning (RIPC). However, there is lack of insight into impact of RIPC on exercise-induce changes in human organs' function. We here aimed to elucidate the effects of 10-day RIPC training on marathon-induced changes in the levels of serum markers of oxidative stress, and liver and heart damage. The study involved 18 male amateur runners taking part in a marathon. RIPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (RIPC group, n=10); the control group underwent sham training (n=8). The effects of RIPC on levels of oxidative stress, and liver and heart damage markers were investigated at rest after 10 consecutive days of training and after the marathon run. The 10-day RIPC training decreased the serum resting levels of C-reactive protein (CRP), alanine transaminase (ALT), γ-glutamyl transpeptidase (GGT), and malondialdehyde (MDA). After the marathon run, creatinine kinase MB (CK-MB), lactate dehydrogenase (LDH), cardiac troponin level (cTn), aspartate aminotransferase (AST), alkaline phosphatase (ALP), ALT, total bilirubin (BIL-T), and MDA levels were increased and arterial ketone body ratio (AKBR) levels were decreased in all participants. The changes were significantly diminished in the RIPC group compared with the control group. The GGT activity remained constant in the RIPC group but significantly increased in the control group after the marathon run. In conclusion, the study provides evidence for a protective effect of RIPC against liver and heart damage induced by strenuous exercise, such as the marathon.

8.
Genes (Basel) ; 12(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440412

RESUMEN

Changes of circulating free plasma DNA (cfDNA) are associated with different types of tissue injury, including those induced by intensive aerobic and anaerobic exercises. Observed changes are dependent from induced inflammation, and thus it may be a potential marker for athletic overtraining. We aimed to identify the response of cfDNA to different types of exercise, with association to exercise intensity as a potential marker of exercise load. Fifty volunteers (25 athletes and 25 physically active men) were assigned to the study and performed maximal aerobic (Bruce test) and anaerobic (Wingate Anaerobic Test) test. Blood samples for cfDNA analysis were collected at four time-points: before, 2-5 min after, 30 min after and 60 min after each type of maximal physical activity. The two-way ANOVA revealed a significant effect of group factor on serum cfDNA concentrations (32.15% higher concentration of cfDNA in the athletes). In turn the results of the post hoc test for the interaction of the repeated measures factor and the group showed that while the concentration of cfDNA decreased by 40.10% in the period from 30 min to 60 min after exercise in the control group, the concentration of cfDNA in the group of athletes remained at a similar level. Our analysis presents different responses depending on the intensity and duration of exercise. Our observations imply that formation of cfDNA is associated with response to physical activity but only during maximal effort.


Asunto(s)
Adaptación Fisiológica , Ácidos Nucleicos Libres de Células/sangre , Deportes , Biomarcadores/sangre , Estudios de Casos y Controles , Humanos , Masculino , Adulto Joven
9.
J Biol Chem ; 296: 100606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33789162

RESUMEN

In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin-mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.


Asunto(s)
Arterias/citología , Calcio/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Células Musculares/citología , Transducción de Señal , Transporte Biológico , Movimiento Celular , Regulación Enzimológica de la Expresión Génica , Humanos , Cinética
10.
Cells ; 8(12)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757003

RESUMEN

Pharmacological activation of protein kinase A (PKA) reduces migration of arterial smooth muscle cells (ASMCs), including those isolated from human arteries (HASMCs). However, when individual migration-associated cellular events, including the polarization of cells in the direction of movement or rearrangements of the actin cytoskeleton, are studied in isolation, these individual events can be either promoted or inhibited in response to PKA activation. While pharmacological inhibition or deficiency of exchange protein activated by cAMP-1 (EPAC1) reduces the overall migration of ASMCs, the impact of EPAC1 inhibition or deficiency, or of its activation, on individual migration-related events has not been investigated. Herein, we report that EPAC1 facilitates the formation of leading-edge protrusions (LEPs) in HASMCs, a critical early event in the cell polarization that underpins their migration. Thus, RNAi-mediated silencing, or the selective pharmacological inhibition, of EPAC1 decreased the formation of LEPs by these cells. Furthermore, we show that the ability of EPAC1 to promote LEP formation by migrating HASMCs is regulated by a phosphodiesterase 1C (PDE1C)-regulated "pool" of intracellular HASMC cAMP but not by those regulated by the more abundant PDE3 or PDE4 activities. Overall, our data are consistent with a role for EPAC1 in regulating the formation of LEPs by polarized HASMCs and show that PDE1C-mediated cAMP hydrolysis controls this localized event.


Asunto(s)
Aorta Torácica/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Aorta Torácica/efectos de los fármacos , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , Quinolinas/farmacología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos
11.
Cell Signal ; 62: 109342, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176020

RESUMEN

Recent reports show that protein kinase A (PKA), but not exchange protein activated by cAMP (EPAC), acts in a cell autonomous manner to constitutively reduce the angiogenic sprouting capacity of murine and human endothelial cells. Specificity in the cellular actions of individual cAMP-effectors can be achieved when a cyclic nucleotide phosphodiesterase (PDE) enzyme acts locally to control the "pool" of cAMP that activates the cAMP-effector. Here, we examined whether PDEs coordinate the actions of PKA during endothelial cell sprouting. Inhibiting each of the cAMP-hydrolyzing PDEs expressed in human endothelial cells revealed that phosphodiesterase 3 (PDE3) inhibition with cilostamide reduced angiogenic sprouting in vitro, while inhibitors of PDE2 and PDE4 family enzymes had no such effect. Identifying a critical role for PDE3B in the anti-angiogenic effects of cilostamide, silencing this PDE3 variant, but not PDE3A, markedly impaired sprouting. Importantly, using both in vitro and ex vivo models of angiogenesis, we show the hypo-sprouting phenotype induced by PDE3 inhibition or PDE3B silencing was reversed by PKA inhibition. Examination of the individual cellular events required for sprouting revealed that PDE3B and PKA each regulated angiogenic sprouting by controlling the invasive capacity of endothelial cells, more specifically, by regulating podosome rosette biogenesis and matrix degradation. In support of the idea that PDE3B acts to inhibit angiogenic sprouting by limiting PKA-mediated reductions in active cdc42, the effects of PDE3B and/or PKA on angiogenic sprouting were negated in cells with reduced cdc42 expression or activity. Since PDE3B and PKA were co-localized in a perinuclear region in human ECs, could be co-immunoprecipitated from lysates of these cells, and silencing PDE3B activated the perinuclear pool of PKA in these cells, we conclude that PDE3B-mediated hydrolysis of cAMP acts to limit the anti-angiogenic potential of PKA in ECs.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , AMP Cíclico/genética , Humanos , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Inhibidores de Fosfodiesterasa 3/farmacología
12.
Cell Signal ; 28(6): 606-19, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26979996

RESUMEN

Blood flow-associated fluid shear stress (FSS) dynamically regulates the endothelium's ability to control arterial structure and function. While arterial endothelial cells (AEC) subjected to high levels of laminar FSS express a phenotype resistant to vascular insults, those exposed to low levels of laminar FSS, or to the FSS associated with oscillatory blood flow, are less resilient. Despite numerous reports highlighting how the cAMP-signaling system controls proliferation, migration and permeability of human AECs (HAECs), its role in coordinating HAEC responses to FSS has received scant attention. Herein we show that the cAMP effector EPAC1 is required for HAECs to align and elongate in the direction of flow, and for the induction of several anti-atherogenic and anti-thrombotic genes associated with these events. Of potential therapeutic importance, EPAC1 is shown to play a dominant role the in response of HAECs to low levels of laminar FSS, such as would be found within atherosclerosis-prone areas of the vasculature. Moreover, we show that EPAC1 promotes these HAEC responses to flow by regulating Vascular Endothelial Growth Factor Receptor-2 and Akt activation, within a VE-cadherin (VECAD)/PECAM1-based mechanosensor. We submit that these findings are consistent with the novel proposition that promoting EPAC1-signaling represents a novel means through which to promote expression of an adaptive phenotype in HAECs exposed to non-adaptive FSS-encoded signals as a consequence of vascular disease.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mecanotransducción Celular , Adaptación Fisiológica , Arterias/citología , Células Cultivadas , Células Endoteliales/citología , Endotelio Vascular/citología , Endotelio Vascular/fisiopatología , Expresión Génica , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Estrés Mecánico
13.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R440-8, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719304

RESUMEN

The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.


Asunto(s)
Área Postrema/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Receptores de Leptina/agonistas , Potenciales de Acción , Animales , Área Postrema/citología , Área Postrema/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Técnicas In Vitro , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Masculino , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo
14.
Biochem Soc Trans ; 42(2): 250-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24646226

RESUMEN

The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA