Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurosurgery ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836613

RESUMEN

BACKGROUND AND OBJECTIVES: Intracranial modulation paradigms, namely deep brain stimulation (DBS) and motor cortex stimulation (MCS), have been used to treat intractable pain disorders. However, treatment efficacy remains heterogeneous, and factors associated with pain reduction are not completely understood. METHODS: We performed an individual patient review of pain outcomes (visual analog scale, quality-of-life measures, complications, pulse generator implant rate, cessation of stimulation) after implantation of DBS or MCS devices. We evaluated 663 patients from 36 study groups and stratified outcomes by pain etiology and implantation targets. RESULTS: Included studies comprised primarily retrospective cohort studies. MCS patients had a similar externalized trial success rate compared with DBS patients (86% vs 81%; P = .16), whereas patients with peripheral pain had a higher trial success rate compared with patients with central pain (88% vs 79%; P = .004). Complication rates were similar for MCS and DBS patients (12% vs 15%; P = .79). Patients with peripheral pain had lower likelihood of device cessation compared with those with central pain (5.7% vs 10%; P = .03). Of all implanted patients, mean pain reduction at last follow-up was 45.8% (95% CI: 40.3-51.2) with a 31.2% (95% CI: 12.4-50.1) improvement in quality of life. No difference was seen between MCS patients (43.8%; 95% CI: 36.7-58.2) and DBS patients (48.6%; 95% CI: 39.2-58) or central (41.5%; 95% CI: 34.8-48.2) and peripheral (46.7%; 95% CI: 38.9-54.5) etiologies. Multivariate analysis identified the anterior cingulate cortex target to be associated with worse pain reduction, while postherpetic neuralgia was a positive prognostic factor. CONCLUSION: Both DBS and MCS have similar efficacy and complication rates in the treatment of intractable pain. Patients with central pain disorders tended to have lower trial success and higher rates of device cessation. Additional prognostic factors include anterior cingulate cortex targeting and postherpetic neuralgia diagnosis. These findings underscore intracranial neurostimulation as an important modality for treatment of intractable pain disorders.

2.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766098

RESUMEN

Pain is a complex experience that remains largely unexplored in naturalistic contexts, hindering our understanding of its neurobehavioral representation in ecologically valid settings. To address this, we employed a multimodal, data-driven approach integrating intracranial electroencephalography, pain self-reports, and facial expression quantification to characterize the neural and behavioral correlates of naturalistic acute pain in twelve epilepsy patients undergoing continuous monitoring with neural and audiovisual recordings. High self-reported pain states were associated with elevated blood pressure, increased pain medication use, and distinct facial muscle activations. Using machine learning, we successfully decoded individual participants' high versus low self-reported pain states from distributed neural activity patterns (mean AUC = 0.70), involving mesolimbic regions, striatum, and temporoparietal cortex. High self-reported pain states exhibited increased low-frequency activity in temporoparietal areas and decreased high-frequency activity in mesolimbic regions (hippocampus, cingulate, and orbitofrontal cortex) compared to low pain states. This neural pain representation remained stable for hours and was modulated by pain onset and relief. Objective facial expression changes also classified self-reported pain states, with results concordant with electrophysiological predictions. Importantly, we identified transient periods of momentary pain as a distinct naturalistic acute pain measure, which could be reliably differentiated from affect-neutral periods using intracranial and facial features, albeit with neural and facial patterns distinct from self-reported pain. These findings reveal reliable neurobehavioral markers of naturalistic acute pain across contexts and timescales, underscoring the potential for developing personalized pain interventions in real-world settings.

3.
Sci Rep ; 14(1): 11933, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789576

RESUMEN

It is hypothesized that disparate brain regions interact via synchronous activity to control behavior. The nature of these interconnected ensembles remains an area of active investigation, and particularly the role of high frequency synchronous activity in simplistic behavior is not well known. Using intracranial electroencephalography, we explored the spectral dynamics and network connectivity of sensorimotor cortical activity during a simple motor task in seven epilepsy patients. Confirming prior work, we see a "spectral tilt" (increased high-frequency (HF, 70-100 Hz) and decreased low-frequency (LF, 3-33 Hz) broadband oscillatory activity) in motor regions during movement compared to rest, as well as an increase in LF synchrony between these regions using time-resolved phase-locking. We then explored this phenomenon in high frequency and found a robust but opposite effect, where time-resolved HF broadband phase-locking significantly decreased during movement. This "connectivity tilt" (increased LF synchrony and decreased HF synchrony) displayed a graded anatomical dependency, with the most robust pattern occurring in primary sensorimotor cortical interactions and less robust pattern occurring in associative cortical interactions. Connectivity in theta (3-7 Hz) and high beta (23-27 Hz) range had the most prominent low frequency contribution during movement, with theta synchrony building gradually while high beta having the most prominent effect immediately following the cue. There was a relatively sharp, opposite transition point in both the spectral and connectivity tilt at approximately 35 Hz. These findings support the hypothesis that task-relevant high-frequency spectral activity is stochastic and that the decrease in high-frequency synchrony may facilitate enhanced low frequency phase coupling and interregional communication. Thus, the "connectivity tilt" may characterize behaviorally meaningful cortical interactions.


Asunto(s)
Movimiento , Corteza Sensoriomotora , Humanos , Masculino , Femenino , Adulto , Corteza Sensoriomotora/fisiología , Corteza Sensoriomotora/fisiopatología , Movimiento/fisiología , Adulto Joven , Electroencefalografía , Red Nerviosa/fisiología , Epilepsia/fisiopatología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38679323

RESUMEN

BACKGROUND: Deep brain stimulation has shown promise in treating individual patients with treatment-resistant depression, but larger-scale trials have been less successful. Here, we created what is, to our knowledge, the largest meta-analysis with individual patient data to date to explore whether the use of tractography enhances the efficacy of deep brain stimulation for treatment-resistant depression. METHODS: We systematically reviewed 1823 articles, selecting 32 that contributed data from 366 patients. We stratified the individual patient data based on stimulation target and use of tractography. Using 2-way type III analysis of variance, Welch's 2-sample t tests, and mixed-effects linear regression models, we evaluated changes in depression severity 1 year (9-15 months) postoperatively and at last follow-up (4 weeks to 8 years) as assessed by depression scales. RESULTS: Tractography was used for medial forebrain bundle (MFB) (n = 17 tractography/32 total), subcallosal cingulate (SCC) (n = 39 tractography/241 total), and ventral capsule/ventral striatum (n = 3 tractography/41 total) targets; it was not used for bed nucleus of stria terminalis (n = 11), lateral habenula (n = 10), and inferior thalamic peduncle (n = 1). Across all patients, tractography significantly improved mean depression scores at 1 year (p < .001) and last follow-up (p = .009). Within the target cohorts, tractography improved depression scores at 1 year for both MFB and SCC, though significance was met only at the α = 0.1 level (SCC: ß = 15.8%, p = .09; MFB: ß = 52.4%, p = .10). Within the tractography cohort, patients with MFB tractography showed greater improvement than patients with SCC tractography (72.42 ± 7.17% vs. 54.78 ± 4.08%) at 1 year (p = .044). CONCLUSIONS: Our findings underscore the promise of tractography in deep brain stimulation for treatment-resistant depression as a method for personalization of therapy, supporting its inclusion in future trials.

5.
Nat Med ; 30(5): 1292-1299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632391

RESUMEN

Targeted tissue ablation involving the anterior hippocampus is the standard of care for patients with drug-resistant mesial temporal lobe epilepsy. However, a substantial proportion continues to suffer from seizures even after surgery. We identified the fasciola cinereum (FC) neurons of the posterior hippocampal tail as an important seizure node in both mice and humans with epilepsy. Genetically defined FC neurons were highly active during spontaneous seizures in epileptic mice, and closed-loop optogenetic inhibition of these neurons potently reduced seizure duration. Furthermore, we specifically targeted and found the prominent involvement of FC during seizures in a cohort of six patients with epilepsy. In particular, targeted lesioning of the FC in a patient reduced the seizure burden present after ablation of anterior mesial temporal structures. Thus, the FC may be a promising interventional target in epilepsy.


Asunto(s)
Hipocampo , Neuronas , Animales , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Epilepsia/patología , Masculino , Optogenética , Femenino , Convulsiones , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Adulto
6.
ACS Nano ; 17(24): 24936-24946, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096422

RESUMEN

Remote and genetically targeted neuromodulation in the deep brain is important for understanding and treatment of neurological diseases. Ultrasound-triggered mechanoluminescent technology offers a promising approach for achieving remote and genetically targeted brain modulation. However, its application has thus far been limited to shallow brain depths due to challenges related to low sonochemical reaction efficiency and restricted photon yields. Here we report a cascaded mechanoluminescent nanotransducer to achieve efficient light emission upon ultrasound stimulation. As a result, blue light was generated under ultrasound stimulation with a subsecond response latency. Leveraging the high energy transfer efficiency of focused ultrasound in brain tissue and the high sensitivity to ultrasound of these mechanoluminescent nanotransducers, we are able to show efficient photon delivery and activation of ChR2-expressing neurons in both the superficial motor cortex and deep ventral tegmental area after intracranial injection. Our liposome nanotransducers enable minimally invasive deep brain stimulation for behavioral control in animals via a flexible, mechanoluminescent sono-optogenetic system.


Asunto(s)
Estimulación Encefálica Profunda , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas/fisiología , Fotones , Optogenética
7.
Front Surg ; 10: 1259756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936949

RESUMEN

Introduction: The utilisation of artificial intelligence (AI) augments intraoperative safety, surgical training, and patient outcomes. We introduce the term Surgeon-Machine Interface (SMI) to describe this innovative intersection between surgeons and machine inference. A custom deep computer vision (CV) architecture within a sparse labelling paradigm was developed, specifically tailored to conceptualise the SMI. This platform demonstrates the ability to perform instance segmentation on anatomical landmarks and tools from a single open spinal dural arteriovenous fistula (dAVF) surgery video dataset. Methods: Our custom deep convolutional neural network was based on SOLOv2 architecture for precise, instance-level segmentation of surgical video data. Test video consisted of 8520 frames, with sparse labelling of only 133 frames annotated for training. Accuracy and inference time, assessed using F1-score and mean Average Precision (mAP), were compared against current state-of-the-art architectures on a separate test set of 85 additionally annotated frames. Results: Our SMI demonstrated superior accuracy and computing speed compared to these frameworks. The F1-score and mAP achieved by our platform were 17% and 15.2% respectively, surpassing MaskRCNN (15.2%, 13.9%), YOLOv3 (5.4%, 11.9%), and SOLOv2 (3.1%, 10.4%). Considering detections that exceeded the Intersection over Union threshold of 50%, our platform achieved an impressive F1-score of 44.2% and mAP of 46.3%, outperforming MaskRCNN (41.3%, 43.5%), YOLOv3 (15%, 34.1%), and SOLOv2 (9%, 32.3%). Our platform demonstrated the fastest inference time (88ms), compared to MaskRCNN (90ms), SOLOV2 (100ms), and YOLOv3 (106ms). Finally, the minimal amount of training set demonstrated a good generalisation performance -our architecture successfully identified objects in a frame that were not included in the training or validation frames, indicating its ability to handle out-of-domain scenarios. Discussion: We present our development of an innovative intraoperative SMI to demonstrate the future promise of advanced CV in the surgical domain. Through successful implementation in a microscopic dAVF surgery, our framework demonstrates superior performance over current state-of-the-art segmentation architectures in intraoperative landmark guidance with high sample efficiency, representing the most advanced AI-enabled surgical inference platform to date. Our future goals include transfer learning paradigms for scaling to additional surgery types, addressing clinical and technical limitations for performing real-time decoding, and ultimate enablement of a real-time neurosurgical guidance platform.

8.
medRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693520

RESUMEN

Background: At the center of the cortical cholinergic network, the nucleus basalis of Meynert (NBM) is crucial for the cognitive domains most vulnerable in PD. Preclinical evidence has demonstrated the positive impact of NBM deep brain stimulation (DBS) on cognition but early human trials have had mixed results. It is possible that DBS of the lateral NBM efferent white matter fiber bundle may be more effective at improving cognitive-motor function. However, precise tractography modelling is required to identify the optimal target for neurosurgical planning. Individualized tractography approaches have been shown to be highly effective for accurately identifying DBS targets but have yet to be developed for the NBM. Methods: Using structural and diffusion weighted imaging, we developed a tractography pipeline for precise individualized identification of the lateral NBM target tract. Using dice similarity coefficients, the reliability of the tractography outputs was assessed across three cohorts to investigate: 1) whether this manual pipeline is more reliable than an existing automated pipeline currently used in the literature; 2) the inter- and intra-rater reliability of our pipeline in research scans of patients with PD; and 3) the reliability and practicality of this pipeline in clinical scans of DBS patients. Results: The individualized manual pipeline was found to be significantly more reliable than the existing automated pipeline for both the segmentation of the NBM region itself (p<0.001) and the reconstruction of the target lateral tract (p=0.002). There was also no significant difference between the reliability of two different raters in the PD cohort (p=0.25), which showed high inter- (mean Dice coefficient >0.6) and intra-rater (mean Dice coefficient >0.7) reliability across runs. Finally, the pipeline was shown to be highly reliable within the clinical scans (mean Dice coefficient = 0.77). However, accurate reconstruction was only evident in 7/10 tracts. Conclusion: We have developed a reliable tractography pipeline for the identification and analysis of the NBM lateral tract in research and clinical grade imaging of healthy young adult and PD patient scans.

9.
J Neurol Neurosurg Psychiatry ; 94(11): 879-886, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37336643

RESUMEN

BACKGROUND: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure. However, the safety and efficacy of this staged strategy is unknown. METHODS: This multicentre, retrospective cohort study included 268 patients consecutively treated with mesial temporal MRgLITT at 11 centres between 2012 and 2018. Seizure outcomes and complications of MRgLITT and any subsequent surgery are reported. Predictive value of preoperative variables for seizure outcome was assessed. RESULTS: Engel I seizure freedom was achieved in 55.8% (149/267) at 1 year, 52.5% (126/240) at 2 years and 49.3% (132/268) at the last follow-up ≥1 year (median 47 months). Engel I or II outcomes were achieved in 74.2% (198/267) at 1 year, 75.0% (180/240) at 2 years and 66.0% (177/268) at the last follow-up. Preoperative focal to bilateral tonic-clonic seizures were independently associated with seizure recurrence. Among patients with seizure recurrence, 14/21 (66.7%) became seizure-free after subsequent ATL and 5/10 (50%) after repeat MRgLITT at last follow-up≥1 year. CONCLUSIONS: MRgLITT is a viable treatment with durable outcomes for patients with drug-resistant mTLE evaluated at a comprehensive epilepsy centre. Although seizure freedom rates were lower than reported with ATL, this series represents the early experience of each centre and a heterogeneous cohort. ATL remains a safe and effective treatment for well-selected patients who fail MRgLITT.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Terapia por Láser , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Estudios Retrospectivos , Convulsiones/cirugía , Epilepsia Refractaria/cirugía , Epilepsia/cirugía , Resultado del Tratamiento , Imagen por Resonancia Magnética , Rayos Láser
10.
Nat Med ; 28(9): 1791-1796, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038628

RESUMEN

Cravings that precede loss of control (LOC) over food consumption present an opportunity for intervention in patients with the binge eating disorder (BED). In this pilot study, we used responsive deep brain stimulation (DBS) to record nucleus accumbens (NAc) electrophysiology during food cravings preceding LOC eating in two patients with BED and severe obesity (trial registration no. NCT03868670). Increased NAc low-frequency oscillations, prominent during food cravings, were used to guide DBS delivery. Over 6 months, we observed improved self-control of food intake and weight loss. These findings provide early support for restoring inhibitory control with electrophysiologically-guided NAc DBS. Further work with increased sample sizes is required to determine the scalability of this approach.


Asunto(s)
Estimulación Encefálica Profunda , Obesidad Mórbida , Ingestión de Alimentos , Humanos , Núcleo Accumbens , Proyectos Piloto , Transmisión Sináptica
11.
J Neurosurg Case Lessons ; 3(21): CASE22117, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35734233

RESUMEN

BACKGROUND: The resective surgery plus responsive neurostimulation (RNS) system is an effective treatment for patients with refractory focal epilepsy. Furthermore, the long-term intracranial electroencephalography data provided by the system can inform a future resection or ablation procedure. RNS patients may undergo 1.5-T magnetic resonance imaging (MRI) under the conditions specified in the RNS system MRI guidelines; however, it was unknown if the MRI artifact would limit intraoperative laser interstitial thermal therapy (LITT) in a patient with a fully implanted RNS system. OBSERVATIONS: The authors were able to complete a successful awake LITT of epileptogenic tissue in a 1.5-T MRI scanner on the ipsilateral side to an implanted RNS system. LESSONS: If a future LITT procedure is probable, the neurostimulator should be placed contralateral to the side of the potential ablation. Using twist drill holes versus burr holes for depth lead placement may assist in future laser bone anchor seating. Before a LITT procedure in a patient with the neurostimulator ipsilateral to the ablation, 1.5-T MRI thermography scanning should be scheduled preoperatively to assess artifact in the proposed ablation zone. Per the RNS system MRI guidelines, the patient must be positioned supine and awake, with no more than 30 minutes of active scan time before a 30-minute pause.

13.
J Neurooncol ; 156(1): 17-22, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34383232

RESUMEN

INTRODUCTION: Brain lesioning is a fundamental technique in the functional neurosurgery world. It has been investigated for decades and presented promising results long before novel pharmacological agents were introduced to treat movement disorders, psychiatric disorders, pain, and epilepsy. Ablative procedures were replaced by effective drugs during the 1950s and by Deep Brain Stimulation (DBS) in the 1990s as a reversible neuromodulation technique. In the last decade, however, the popularity of brain lesioning has increased again with the introduction of magnetic resonance-guided focused ultrasound (MRgFUS). OBJECTIVE: In this review, we will cover the current and emerging role of MRgFUS in functional neurosurgery. METHODS: Literature review from PubMed and compilation. RESULTS: Investigated since 1930, MRgFUS is a technology enabling targeted energy delivery at the convergence of mechanical sound waves. Based on technological advancements in phased array ultrasound transducers, algorithms accounting for skull penetration by sound waves, and MR imaging for targeting and thermometry, MRgFUS is capable of brain lesioning with sub-millimeter precision and can be used in a variety of clinical indications. CONCLUSION: MRgFUS is a promising technology evolving as a dominant tool in different functional neurosurgery procedures in movement disorders, psychiatric disorders, epilepsy, among others.


Asunto(s)
Imagen por Resonancia Magnética , Procedimientos Neuroquirúrgicos , Humanos , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos/métodos
14.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33355232

RESUMEN

Theta oscillations (3-8 Hz) in the human brain have been linked to perception, cognitive control, and spatial memory, but their relation to the motor system is less clear. We tested the hypothesis that theta oscillations coordinate distributed behaviorally relevant neural representations during movement using intracranial electroencephalography (iEEG) recordings from nine patients (n = 490 electrodes) as they performed a simple instructed movement task. Using high frequency activity (HFA; 70-200 Hz) as a marker of local spiking activity, we identified electrodes that were positioned near neural populations that showed increased activity during instruction and movement. We found that theta synchrony was widespread throughout the brain but was increased near regions that showed movement-related increases in neural activity. These results support the view that theta oscillations represent a general property of brain activity that may also play a specific role in coordinating widespread neural activity when initiating voluntary movement.


Asunto(s)
Encéfalo , Movimiento , Electroencefalografía , Humanos , Memoria Espacial , Ritmo Teta
15.
Surg Innov ; 28(4): 427-437, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33382008

RESUMEN

Objective. Holographic mixed reality (HMR) allows for the superimposition of computer-generated virtual objects onto the operator's view of the world. Innovative solutions can be developed to enable the use of this technology during surgery. The authors developed and iteratively optimized a pipeline to construct, visualize, and register intraoperative holographic models of patient landmarks during spinal fusion surgery. Methods. The study was carried out in two phases. In phase 1, the custom intraoperative pipeline to generate patient-specific holographic models was developed over 7 patients. In phase 2, registration accuracy was optimized iteratively for 6 patients in a real-time operative setting. Results. In phase 1, an intraoperative pipeline was successfully employed to generate and deploy patient-specific holographic models. In phase 2, the registration error with the native hand-gesture registration was 20.2 ± 10.8 mm (n = 7 test points). Custom controller-based registration significantly reduced the mean registration error to 4.18 ± 2.83 mm (n = 24 test points, P < .01). Accuracy improved over time (B = -.69, P < .0001) with the final patient achieving a registration error of 2.30 ± .58 mm. Across both phases, the average model generation time was 18.0 ± 6.1 minutes (n = 6) for isolated spinal hardware and 33.8 ± 8.6 minutes (n = 6) for spinal anatomy. Conclusions. A custom pipeline is described for the generation of intraoperative 3D holographic models during spine surgery. Registration accuracy dramatically improved with iterative optimization of the pipeline and technique. While significant improvements and advancements need to be made to enable clinical utility, HMR demonstrates significant potential as the next frontier of intraoperative visualization.


Asunto(s)
Realidad Aumentada , Fusión Vertebral , Cirugía Asistida por Computador , Humanos , Imagenología Tridimensional , Procedimientos Neuroquirúrgicos
16.
J Neurosurg Pediatr ; 26(6): 642-647, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32858506

RESUMEN

Hemispheric disconnection in the form of hemispherectomy or hemispherotomy is the most effective way of treating intractable hemispheric epilepsy. Anatomical hemispherectomy approaches have largely been abandoned in most cases due to a higher risk of superficial hemosiderosis, intraoperative blood loss, hydrocephalus, prolonged hospital stay, and mortality compared to the variety of tissue-sparing hemispherotomy techniques. Disconnective hemispherotomy approaches utilize the lateral ventricle as a key component of the surgical corridor. Without a lateral ventricle, disconnective surgery becomes significantly challenging, typically leading to a hemispherectomy. The authors present the case of a patient with severe hemispheric dysplasia without a lateral ventricle on the pathologic side and detail a novel surgical technique for a prone, occipital interhemispheric, tissue-sparing, purely disconnective aventricular hemispherotomy with an excellent surgical outcome.

17.
Stereotact Funct Neurosurg ; 98(4): 263-269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32403106

RESUMEN

Magnetic resonance image-guided high-intensity focused ultrasound (MRgFUS)-based thermal ablation of the ventral intermediate nucleus of the thalamus (VIM) is a minimally invasive treatment modality for essential tremor (ET). Dentato-rubro-thalamic tractography (DRTT) is becoming increasingly popular for direct targeting of the presumed VIM ablation focus. It is currently unclear if patients with implanted pulse generators (IPGs) can safely undergo MRgFUS ablation and reliably acquire DRTT suitable for direct targeting. We present an 80-year-old male with a spinal cord stimulator (SCS) and an 88-year-old male with a cardiac pacemaker who both underwent MRgFUS for medically refractory ET. Clinical outcomes were measured using the Clinical Rating Scale for Tremor (CRST). DRTT was successfully created and imaging parameter adjustments did not result in any delay in procedural time in either case. In the first case, 7 therapeutic sonications were delivered. The patient improved immediately and durably with a 90% CRST-disability improvement at 6-week follow-up. In our second case, 6 therapeutic sonications were delivered with durable, 75% CRST-disability improvement at 6 weeks. These are the first cases of MRgFUS thalamotomy in patients with IPGs. DRTT targeting and MRgFUS-based thermal ablation can be safely performed in these patients using a 1.5-T MRI.


Asunto(s)
Núcleos Cerebelosos/diagnóstico por imagen , Neuroestimuladores Implantables , Marcapaso Artificial , Núcleo Rojo/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Anciano de 80 o más Años , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Psicocirugía/métodos , Estimulación de la Médula Espinal/instrumentación , Resultado del Tratamiento
18.
Neurooncol Pract ; 7(2): 152-157, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32206320

RESUMEN

Differentiation of true tumor progression from treatment-related effects remains a major unmet need in caring for patients with glioblastoma. Here, we report how the intraoperative combination of MRI with18F-fluciclovine PET guided surgical sampling in 2 patients with recurrent glioblastoma.18F-Fluciclovine PET is FDA approved for use in prostate cancer and carries an orphan drug designation in glioma. To investigate its utility in recurrent glioblastoma, we fused PET and MRI images using 2 different surgical navigation systems and performed targeted stereotactic biopsies from the areas of high ("hot") and low ("cold") radiotracer uptake. Concordant histopathologic and imaging findings suggest that a combined18F-fluciclovine PET-MRI-guided approach can guide neurosurgical resection of viable recurrent glioblastoma in the background of treatment-related effects, which can otherwise look similar on MRI.

19.
World Neurosurg ; 137: e89-e97, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31954907

RESUMEN

BACKGROUND: In deep brain stimulation (DBS) for essential tremor, the primary target ventrointermedius (VIM) nucleus cannot be clearly visualized with structural imaging. As such, there has been much interest in the dentatorubrothalamic tract (DRTT) for target localization, but evidence for the DRTT as a putative stimulation target in tremor suppression is lacking. We evaluated proximity of the DRTT in relation to DBS stimulation parameters. METHODS: This is a retrospective analysis of 26 consecutive patients who underwent DBS with microelectrode recordings (46 leads). Fiber tracking was performed with a published deterministic technique. Clinically optimized stimulation parameters were obtained in all patients at the time of most recent follow-up (6.2 months). Volume of tissue activated (VTA) around contacts was calculated from a published model. RESULTS: Tremor severity was reduced in all treated hemispheres, with 70% improvement in the treated hand score of the Clinical Rating Scale for Tremor. At the level of the active contact (2.9 ± 2.0 mm superior to the commissural plane), the center of the DRTT was lateral to the contacts (5.1 ± 2.1 mm). The nearest fibers of the DRTT were 2.4 ± 1.7 mm from the contacts, whereas the radius of the VTA was 2.9 ± 0.7 mm. The VTA overlapped with the DRTT in 77% of active contacts. The distance from active contact to the DRTT was positively correlated with stimulation voltage requirements (Kendall τ = 0.33, P = 0.006), whereas distance to the atlas-based VIM coordinates was not. CONCLUSIONS: Active contacts in proximity to the DRTT had lower voltage requirements. Data from a large cohort provide support for the DRTT as an effective stimulation target for tremor control.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Tálamo/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Temblor Esencial/diagnóstico , Temblor Esencial/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
20.
World Neurosurg ; 136: 326, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31996340

RESUMEN

A potential application of near-infrared (NIR) fluorescence imaging using second-window indocyanine green (SWIG) is demonstrated. We hypothesized that because the pituitary lacks a blood-brain barrier, we might visualize the pituitary stalk using SWIG. A 52-year-old, right-handed man presented to our clinic for evaluation of progressive loss of vision. Physical examination was significant for loss of right peripheral vision and near-complete loss of left field vision. Prolactin was high-normal at 16.2 mg/dL. Brain magnetic resonance imaging demonstrated a 36-mm sellar mass extending superiorly and laterally crossing the intracranial left internal carotid artery, consistent with a nonfunctional pituitary macroadenoma. We elected to pursue left pterional craniotomy for resection. The patient was eligible for our SWIG clinical trial and consented to the study. SWIG is a novel, investigational technique using Food and Drug Administration-approved indocyanine green to enhance visualization of neoplastic tissue intraoperatively.1-7 The patient received 2.5 mg/kg of indocyanine green intravenously approximately 24 hours preoperatively. Intraoperatively, under white-light microscopy, the tumor was easily identified and distinguished from the optic nerves and internal carotid artery. After debulking of the gross tumor, NIR visualization using a laser-equipped endoscope8 demonstrated strong NIR fluorescence in the pituitary stalk. Despite the distorted anatomy, this technique enabled us to confidently identify and preserve the pituitary stalk. Postoperatively, the patient had persistently high urine output that normalized in 24 hours without desmopressin (sodium 139-140 mmol/L); after uneventful recovery, he was discharged with mild improvement in visual function. This case demonstrated a potential use of our SWIG protocol. As the stalk demonstrates strong NIR fluorescence after high-dose indocyanine green administration, surgeons may be able to better localize and preserve the stalk even in complex skull base tumor cases where the anatomy may be significantly distorted.


Asunto(s)
Procedimientos Neuroquirúrgicos/métodos , Hipófisis/diagnóstico por imagen , Hipófisis/cirugía , Neoplasias de la Base del Cráneo/diagnóstico por imagen , Neoplasias de la Base del Cráneo/cirugía , Base del Cráneo/diagnóstico por imagen , Base del Cráneo/cirugía , Adenoma/cirugía , Fluorescencia , Colorantes Fluorescentes , Humanos , Verde de Indocianina , Periodo Intraoperatorio , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Óptica , Neoplasias Hipofisarias/cirugía , Neoplasias de la Base del Cráneo/complicaciones , Espectroscopía Infrarroja Corta , Resultado del Tratamiento , Trastornos de la Visión/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...