Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(19): 5596-5614, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37492997

RESUMEN

Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.


Asunto(s)
Charadriiformes , Cambio Climático , Animales , Calentamiento Global , Océano Atlántico , Viento , Regiones Árticas
2.
Glob Chang Biol ; 28(9): 3054-3065, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202506

RESUMEN

Multiple environmental forcings, such as warming and changes in ocean circulation and nutrient supply, are affecting the base of Arctic marine ecosystems, with cascading effects on the entire food web through bottom-up control. Stable nitrogen isotopes (δ15 N) can be used to detect and unravel the impact of these forcings on this unique ecosystem, if the many processes that affect the δ15 N values are constrained. Combining unique 60-year records from compound specific δ15 N biomarkers on harp seal teeth alongside state-of-the-art ocean modelling, we observed a significant decline in the δ15 N values at the base of the Barents Sea food web from 1951 to 2012. This strong and persistent decadal trend emerges due to the combination of anthropogenic atmospheric nitrogen deposition in the Atlantic, increased northward transport of Atlantic water through Arctic gateways and local feedbacks from increasing Arctic primary production. Our results suggest that the Arctic ecosystem has been responding to anthropogenically induced local and remote drivers, linked to changing ocean biology, chemistry and physics, for at least 60 years. Accounting for these trends in δ15 N values at the base of the food web is essential to accurately detect ecosystem restructuring in this rapidly changing environment.


Asunto(s)
Caniformia , Phocidae , Animales , Regiones Árticas , Ecosistema , Cadena Alimentaria
3.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983875

RESUMEN

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio/análisis , Atún , Animales , Asia , Ecología , Monitoreo del Ambiente/métodos , Europa (Continente) , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Metilación , Modelos Teóricos , América del Norte , Océano Pacífico , Alimentos Marinos , Agua de Mar , Contaminantes del Agua , Contaminantes Químicos del Agua/análisis
4.
Nat Commun ; 12(1): 6214, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711843

RESUMEN

The open ocean nitrogen cycle is being altered by increases in anthropogenic atmospheric nitrogen deposition and climate change. How the nitrogen cycle responds will determine long-term trends in net primary production (NPP) in the nitrogen-limited low latitude ocean, but is poorly constrained by uncertainty in how the source-sink balance will evolve. Here we show that intensifying nitrogen limitation of phytoplankton, associated with near-term reductions in NPP, causes detectable declines in nitrogen isotopes (δ15N) and constitutes the primary perturbation of the 21st century nitrogen cycle. Model experiments show that ~75% of the low latitude twilight zone develops anomalously low δ15N by 2060, predominantly due to the effects of climate change that alter ocean circulation, with implications for the nitrogen source-sink balance. Our results highlight that δ15N changes in the low latitude twilight zone may provide a useful constraint on emerging changes to nitrogen limitation and NPP over the 21st century.


Asunto(s)
Isótopos de Nitrógeno/análisis , Agua de Mar/análisis , Cambio Climático , Ciclo del Nitrógeno , Isótopos de Nitrógeno/metabolismo , Océanos y Mares , Fitoplancton/metabolismo
5.
Nat Commun ; 10(1): 4611, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601810

RESUMEN

Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most 10 ppm to this mechanism, leaving ~20 ppm unexplained. We show that an Fe-induced stimulation of dinitrogen (N2) fixation can induce a low latitude drawdown of 7-16 ppm CO2. This mechanism involves a closer coupling between N2 fixers and denitrifiers that alleviates widespread nitrate limitation. Consequently, phosphate utilisation and carbon export increase near upwelling zones, causing deoxygenation and deeper carbon injection. Furthermore, this low latitude mechanism reproduces the regional patterns of organic δ15N deposited in glacial sediments. The positive response of marine N2 fixation to dusty ice age conditions, first proposed twenty years ago, therefore compliments high latitude changes to amplify CO2 drawdown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...