Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 8(Pt 2): 663-5, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11512888

RESUMEN

The local structures of Am, Nd and Er-Benzimidazole (Biz) in solution were determined by EXAFS. The BIZ molecule coordinated to Am and Nd through two nitrogen atoms in a bidentate fashion. Two nitrogen atoms of BIZ ligated to Am and Nd with the bond distances R(Am-n) N=2.63A and R(Nd-N) = 2.65 A, respectively. The total coordination number of the Am BIZ complexes (at a molar ratio of metal ion to ligand of 1:20) was approximately 10 but that of Nd BIZ complex was approximately 9.

2.
Inorg Chem ; 39(3): 595-601, 2000 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11229583

RESUMEN

We have used EXAFS spectroscopy to investigate the inner sphere coordination of trivalent lanthanide (Ln) and actinide (An) ions in aqueous solutions as a function of increasing chloride concentration. At low chloride concentration, the hydration numbers and corresponding Ln,An-O bond lengths are as follows: La3+, N = 9.2, R = 2.54 A; Ce3+, N = 9.3, R = 2.52 A; Nd3+, N = 9.5, R = 2.49 A; Eu3+, N = 9.3, R = 2.43 A; Yb3+, N = 8.7, R = 2.32 A; Y3+, N = 9.7, R = 2.36 A; Am3+, N = 10.3, R = 2.48 A; Cm3+, N = 10.2, R = 2.45 A. In ca. 14 M LiCl, the early Ln3+ ions (La, Ce, Nd, and Eu) show inner sphere Cl- complexation along with a loss of H2O. The average chloride coordination numbers and Ln-Cl bond lengths are as follows: La3+, N = 2.1, R = 2.92 A; Ce3+, N = 1.8, R = 2.89 A; Nd3+, N = 1.9, R = 2.85 A; Eu3+, N = 1.1, R = 2.81 A. The extent of Cl- ion complexation decreases going across the Ln3+ series to the point where Yb3+ shows no Cl- complexation and no loss of coordinated water molecules. The actinide ions, Am3+ and Cm3+, show the same structural effects as the early Ln3+ ions, i.e., Cl- ion replacement of the H2O at high chloride thermodynamic activities. The Clion coordination numbers and An-Cl bond lengths are: Am3+, N = 1.8, R = 2.81 A; Cm3+, N = 2.4, R = 2.76 A. When combined with results reported previously for Pu3+ which showed no significant chloride complexation in 12 M LiCl, these results suggest that the extent of chloride complexation is increasing across the An3+ series. The origin of the differences in chloride complex formation between the Ln3+ and An3+ ions and the relevance to earlier work is discussed.

3.
4.
Health Phys ; 75(1): 34-50, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9645664

RESUMEN

Chemically, 237Np(V) is as toxic as U(VI), and radiologically, about as toxic as 239Pu. Depending on redox conditions in vivo, 237Np exists as weakly complexing Np(V) (NpO2+) or as Np(IV), which forms complexes as stable as those of Pu(IV). Ten multidentate catecholate (CAM) and hydroxypyridinonate (HOPO) ligands with great affinity for Pu(IV) were compared with CaNa3-DTPA for in vivo chelation of 237Np. Mice were injected intravenously with 237NpO2Cl: those in a kinetic study were killed 1 to 2880 min; in ligand studies, fed mice were injected intraperitoneally with a ligand 5, 60, or 1440 min after 237Np(V) (molar ratio 5.6 to 73), mice fasted for 16 h were gastrically intubated with a ligand 3 min after 237Np(V) (molar ratio 5.6 to 274), and all were killed 24 h after ligand administration; tissues and excreta were radioanalyzed. Rapid plasma clearance and urinary excretion of 237Np(V) resemble U(VI); deposition and early retention in skeleton and liver resemble Pu(IV). The x-ray absorption near edge structure spectroscopy (XANES) spectra of femora of 237Np(V)-injected mice, compared with spectra of Np(V) and Np(IV) from reference solids, showed predominantly Np(IV). Significant in vivo 237Np chelation was obtained with all of the HOPO and CAM ligands injected at molar ratio 22; the HOPO ligands reduced 237Np in skeleton, liver, and other soft tissue, on average, to 72, 25, and 25% of control, respectively, while CaNa3-DTPA was ineffective. Two HOPO ligands injected 60 min after 237Np (molar ratio 5.6) significantly reduced body and liver 237Np, and three HOPO ligands given orally (molar ratio > or = 73) significantly reduced body and liver 237Np, compared with controls. Combined with earlier work, these results indicate that: the dominant neptunium species circulating and excreted in urine is Np(V), while that in bone and liver deposits is Np(IV); Np(V) must be reduced to Np(IV) before it can be stably chelated; efficient decorporation of neptunium requires multidentate ligands that form exceptionally stable actinide(IV) chelates and facilitate Np(V) reduction.


Asunto(s)
Quelantes/farmacología , Neptunio/farmacocinética , Administración Oral , Animales , Radiación de Fondo , Huesos/metabolismo , Catecoles/metabolismo , Catecoles/farmacología , Quelantes/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Ligandos , Ratones , Neptunio/administración & dosificación , Oxidación-Reducción , Piridinas/metabolismo , Piridinas/farmacología
5.
Inorg Chem ; 36(21): 4676-4683, 1997 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-11670143

RESUMEN

U, Np, and Pu L(II,III)-edge X-ray absorption fine structure (XAFS) spectra were collected for the UO(2)(2+), NpO(2)(+), Np(4+), and Pu(3+) ions as a function of chloride concentration in aqueous solution. At low chloride concentration, the hydration numbers and corresponding bond lengths for the different ions are as follows: UO(2)(2+), N= 5.3, R = 2.41 Å; NpO(2)(+), N = 5.0, R = 2.50 Å; Np(4+), N = 11.2, R = 2.40 Å; Pu(3+), N = 10.2, R = 2.51 Å. As the Cl(-) concentration increases, inner-sphere Cl(-) complexation occurs, resulting in a decrease in the hydration numbers and an expansion of the actinide-oxygen (water) bond lengths. The Pu(3+) ion shows only a decrease in hydration number (40%) and no inner-sphere Cl(-) complexation for [Cl(-)] < 14 M. For concentrations up to 10-14 M Cl(-), the average Cl(-) coordination numbers and bond lengths are as follows: UO(2)(2+), N = 2.6, R = 2.73 Å; NpO(2)(+), N = 1.0, R = 2.84 Å; Np(4+), N = 2.0, R = 2.61 Å. Structural changes are observed in the near-edge spectral region as shown by significant changes in the white line intensities upon Cl(-) complexation. For ions with similar structures, i.e. Pu(3+) and Np(4+) or the actinyl ions NpO(2)(+) and UO(2)(2+), positive energy shifts are observed with increasing oxidation state. The ability to use XAFS speciation results to calculate equilibrium constants and the relationship of these results to previous studies are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...