Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 11(4): uhae059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38689699

RESUMEN

In Chinese cabbage, rosette leaves expose their adaxial side to the light converting light energy into chemical energy, acting as a source for the growth of the leafy head. In the leafy head, the outer heading leaves expose their abaxial side to the light while the inner leaves are shielded from the light and have become a sink organ of the growing Chinese cabbage plant. Interestingly, variation in several ad/abaxial polarity genes is associated with the typical leafy head morphotype. The initiation of leaf primordia and the establishment of leaf ad/abaxial polarity are essential steps in the initiation of marginal meristem activity leading to leaf formation. Understanding the molecular genetic mechanisms of leaf primordia formation, polar differentiation, and leaf expansion is thus relevant to understand leafy head formation. As Brassica's are mesa-hexaploids, many genes have multiple paralogues, complicating analysis of the genetic regulation of leaf development. In this study, we used laser dissection of Chinese cabbage leaf primordia and the shoot apical meristem (SAM) to compare gene expression profiles between both adaxial and abaxial sides and the SAM aiming to capture transcriptome changes underlying leaf primordia development. We highlight genes with roles in hormone pathways and transcription factors. We also assessed gene expression gradients along expanded leaf blades from the same plants to analyze regulatory links between SAM, leaf primordia and the expanding rosette leaf. The catalogue of differentially expressed genes provides insights in gene expression patterns involved in leaf development and form a starting point to unravel leafy head formation.

2.
Nat Genet ; 56(3): 517-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351383

RESUMEN

Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.


Asunto(s)
Brassica , Brassica/genética , Brassica/metabolismo , Genoma de Planta/genética , Expresión Génica
3.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707440

RESUMEN

Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.


Asunto(s)
Brassica napus , Gastrópodos , Animales , Brassica napus/genética , Domesticación , Filogenia , Alimentación Animal , Poliploidía
4.
Plant J ; 113(6): 1192-1210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626115

RESUMEN

Meiotic recombination is crucial for assuring proper segregation of parental chromosomes and generation of novel allelic combinations. As this process is tightly regulated, identifying factors influencing rate, and distribution of meiotic crossovers (COs) is of major importance, notably for plant breeding programs. However, high-resolution recombination maps are sparse in most crops including the Brassica genus and knowledge about intraspecific variation and sex differences is lacking. Here, we report fine-scale resolution recombination landscapes for 10 female and 10 male crosses in Brassica oleracea, by analyzing progenies of five large four-way-cross populations from two reciprocally crossed F1s per population. Parents are highly diverse inbred lines representing major crops, including broccoli, cauliflower, cabbage, kohlrabi, and kale. We produced approximately 4.56T Illumina data from 1248 progenies and identified 15 353 CO across the 10 reciprocal crosses, 51.13% of which being mapped to <10 kb. We revealed fairly similar Mb-scale recombination landscapes among all cross combinations and between the sexes, and provided evidence that these landscapes are largely independent of sequence divergence. We evidenced strong influence of gene density and large structural variations on CO formation in B. oleracea. Moreover, we found extensive variations in CO number depending on the direction and combination of the initial parents crossed with, for the first time, a striking interdependency between these factors. These data improve our current knowledge on meiotic recombination and are important for Brassica breeders.


Asunto(s)
Brassica , Meiosis , Brassica/clasificación , Brassica/citología , Brassica/genética , Fitomejoramiento , Recombinación Genética , Cromosomas de las Plantas
5.
Theor Appl Genet ; 135(10): 3611-3628, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36057748

RESUMEN

KEY MESSAGE: Correlations between morphological traits of cabbage rosette leaves and heads were found. Genome-wide association studies of these traits identified 50 robust quantitative trait loci in multiple years. Half of these loci affect both organs. Cabbage (Brassica oleracea var. capitata) is an economically important vegetable crop cultivated worldwide. Cabbage plants go through four vegetative stages: seedling, rosette, folding and heading. Rosette leaves are the largest leaves of cabbage plants and provide most of the energy needed to produce the leafy head. To understand the relationship and the genetic basis of leaf development and leafy head formation, 308 cabbage accessions were scored for rosette leaf and head traits in three-year field trials. Significant correlations were found between morphological traits of rosette leaves and heads, namely leaf area with the head area, height and width, and leaf width with the head area and head height, when heads were harvested at a fixed number of days after sowing. Fifty robust quantitative trait loci (QTLs) for rosette leaf and head traits distributed over all nine chromosomes were identified with genome-wide association studies. All these 50 loci were identified in multiple years and generally affect multiple traits. Twenty-five of the QTL were associated with both rosette leaf and leafy head traits. We discuss thirteen candidate genes identified in these QTL that are expressed in heading leaves, with an annotation related to auxin and other phytohormones, leaf development, and leaf polarity that likely play a role in leafy head development or rosette leaf expansion.


Asunto(s)
Brassica , Brassica/genética , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Hojas de la Planta
6.
Hortic Res ; 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35184188

RESUMEN

Brassica oleracea displays enormous phenotypic variation, including vegetables like cabbage, broccoli, cauliflower, kohlrabi, kales etc. Its domestication has not been clarified, despite several genetic studies and investigations of ancient literature. We used 14 152 high-quality SNP markers for population genetic studies and species-tree estimation (treating morphotypes as "species") using SVD-quartets coalescent-modelling of a collection of 912 globally distributed accessions representing ten morphotypes of B. oleracea, wild B. oleracea accessions and nine related C9 Brassica species. Our genealogical tree provided evidence for two domestication lineages, the "leafy head" lineage (LHL) and the "arrested inflorescence" lineage (AIL). It also showed that kales are polyphyletic with regards to B. oleracea morphotypes, which fits ancient literature describing highly diverse kale types at around 400 BC. The SVD-quartets species tree topology showed that different kale clades are sister to either the LHL or the AIL. Cabbages from the middle-east formed the first-branching cabbage-clade, supporting the hypothesis that cabbage domestication started in the middle-east, which is confirmed by archeological evidence and historic writings. We hypothesize that cabbages and cauliflowers stem from kales introduced from Western Europe to the middle-east, possibly transported with the tin-trade routes in the Bronze age, to be re-introduced later into Europe. Cauliflower is the least diverse morphotype showing strong genetic differentiation with other morphotypes except broccoli, suggesting a strong genetic bottleneck. Genetic diversity reduced from landraces to modern hybrids for almost all morphotypes. This comprehensive Brassica C-group germplasm collection provides valuable genetic resources and a sound basis for B. oleracea breeding.

7.
Hortic Res ; 6: 130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31814983

RESUMEN

Chinese cabbage plants go through seedling and rosette stages before forming their leafy head. Chinese cabbage plants resemble pak-choi plants at their seedling stage, but in their rosette stage the leaves of Chinese cabbage differentiate, as they increase in size with shorter petioles. In order to understand the molecular pathways that play a role in leafy head formation, transcript abundance of young emerging leaves was profiled during development of two Chinese cabbage genotypes and a single pak-choi genotype. The two Chinese cabbages differed in many aspects, among others earliness, leaf size and shape, leaf numbers, and leafy head shape. Genome-wide transcriptome analysis clearly separated the seedling stages of all three genotypes together with the later stages from pak-choi, from the later developmental stages of both Chinese cabbages (rosette, folding, and heading). Weighted correlation network analysis and hierarchical clustering using Euclidean distances resulted in gene clusters with transcript abundance patterns distinguishing the two Chinese cabbages from pak-choi. Three clusters included genes with transcript abundance affected by both genotype and developmental stage, whereas two clusters showed only genotype effects. This included a genotype by developmental stage cluster highly enriched with the MapMan category photosynthesis, with high expression during rosette and folding in Chinese cabbages and low expression in the heading inner leaves that are not exposed to light. The other clusters contained many genes in the MapMan categories Cell, showing again differences between pak-choi and both Chinese cabbages. We discuss how this relates to the differences in leaf blade growth between Chinese cabbage and pak-choi, especially at the rosette stage. Overall, comparison of the transcriptome between leaves of two very different Chinese cabbages with pak-choi during plant development allowed the identification of specific gene categories associated with leafy head formation.

8.
PLoS One ; 14(6): e0217862, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170222

RESUMEN

Turnip (Brassica rapa spp. rapa) is an important vegetable species, with a unique physiology. Several plant parts, including both the turnip tubers and leaves, are important for human consumption. During the development of turnip plants, the leaves function as metabolic source tissues, while the tuber first functions as a sink, while later the tuber turns into a source for development of flowers and seeds. In the present study, chemical changes were determined for two genotypes with different genetic background, and included seedling, young leaves, mature leaves, tuber surface, tuber core, stalk, flower and seed tissues, at seven different time points during plant development. As a basis for understanding changes in glucosinolates during plant development, the profile of glucosinolates was analysed using liquid chromatography (LC) coupled to mass spectrometry (MS). This analysis was complemented by a gene expression analysis, focussed on GLS biosynthesis, which could explain part of the observed variation, pointing to important roles of specific gene orthologues for defining the chemical differences. Substantial differences in glucosinolate profiles were observed between above-ground tissues and turnip tuber, reflecting the differences in physiological role. In addition, differences between the two genotypes and between tissues that were harvested early or late during the plant lifecycle. The importance of the observed differences in glucosinolate profile for the ecophysiology of the turnip and for breeding turnips with optimal chemical profiles is discussed.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Organogénesis , Brassica napus/genética , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Glucosinolatos/biosíntesis , Glucosinolatos/química , Redes y Vías Metabólicas , Metionina/química , Metionina/metabolismo , Especificidad de Órganos/genética , Organogénesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal
9.
Hortic Res ; 6: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854213

RESUMEN

Brassica species are characterized by their tremendous intraspecific diversity, exemplified by leafy vegetables, oilseeds, and crops with enlarged inflorescences or above ground storage organs. In contrast to potato tubers that are edible storage organs storing energy as starch and are the vegetative propagation modules, the storage organs of turnips, grown from true seed, are swollen hypocotyls with varying degrees of root and stem that mainly store glucose and fructose. To highlight their anatomical origin, we use the term "hypocotyl-tuber" for these turnip vegetative storage organs. We combined cytological, physiological, genetic and transcriptomic approaches, aiming to identify the initial stages, molecular pathways and regulatory genes for hypocotyl-tuber induction in turnips (B. rapa subsp. rapa). We first studied the development of the hypocotyl zone of turnip and Pak choi and found that 16 days after sowing (DAS) morphological changes occurred in the xylem which indicated the early tuberization stage. Tissue culture experiments showed a clear effect of auxin on hypocotyl-tuber growth. Differentially expressed genes between 1 and 6 weeks after sowing in turnip hypocotyls, located in genomic regions involved in tuber initiation and/or tuber growth defined by QTL and selective sweeps for tuber formation, were identified as candidate genes that were studied in more detail for their role in hypocotyl-tuber formation. This included a Bra-FLOR1 paralogue with increased expression 16 DAS, when the hypocotyl starts swelling, suggesting dual roles for duplicated flowering time genes in flowering and hypocotyl-tuber induction. Bra-CYP735A2 was identified for its possible role in tuber growth via trans-zeatin. Weigthed Co-expression Network Analysis (WGCNA) identified 59 modules of co-expressed genes. Bra-FLOR1 and Bra-CYP735A2 were grouped in a module that included several genes involved in carbohydrate transport and metabolism, cell-wall growth, auxin regulation and secondary metabolism that serve as starting points to illuminate the transcriptional regulation of hypocotyl-tuber formation and development.

10.
PLoS One ; 13(11): e0206103, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30399182

RESUMEN

Whiteflies are among the world's most significant agricultural pests and chemical insecticides are extensively used to reduce crop damage to acceptable levels. However, nearly all insecticides pose a threat to the environment and alternative control methods, such as breeding of crop varieties that are inherently insect-resistant, are needed. Previously, a strong source of plant-age dependent resistance to the cabbage whitefly (Aleyrodes proletella) has been identified in the modern white cabbage (Brassica oleracea var. capitata) variety Rivera. However, nothing is known about the molecular mechanisms or the genes involved in this resistance. In the present study, a multidisciplinary approach combining transcriptome and metabolome profiling with genetic mapping was used to identify the molecular players of whitefly resistance in cabbage. Transcriptome profiles of young (susceptible) and older (resistant) Rivera plants were analyzed using RNA sequencing. While many genes involved in general processes were differentially expressed between both ages, several defense-related processes were overrepresented in the transcriptome profile of older plants. Hormone measurements revealed that jasmonic acid (JA) levels decreased upon whitefly infestation at both plant ages. Interestingly, abscisic acid (ABA) levels showed contrasting effects in response to whitefly infestation: ABA levels were reduced in young plants but induced in older plants upon whitefly feeding. Auxin levels were significantly lower in older plants compared with young plants, independent of whitefly presence, while glucosinolate levels were higher. Additionally, whitefly performance was monitored in an F2 population derived from a cross between Rivera and the susceptible white cabbage variety Christmas Drumhead. Significant QTL intervals were mapped on chromosome 2 and 9 for oviposition rate and whitefly adult survival, respectively. Several genes that were higher expressed in older plants and located in the identified QTL intervals were orthologous to Arabidopsis genes that have been related to ABA signaling, suggesting a role for ABA in the regulation of resistance towards whiteflies. Our results show that combining different omics approaches is a useful strategy to identify candidate genes underlying insect resistance.


Asunto(s)
Ácido Abscísico/metabolismo , Brassica/parasitología , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad , Hemípteros/fisiología , Metaboloma/genética , Enfermedades de las Plantas/parasitología , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética , Animales , Brassica/genética , Brassica/crecimiento & desarrollo , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Anotación de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/parasitología , Análisis de Componente Principal , Transducción de Señal
11.
PLoS One ; 12(3): e0172950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257507

RESUMEN

Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Brassica/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Adaptación Fisiológica , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
New Phytol ; 213(3): 1346-1362, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27699793

RESUMEN

Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Estrés Fisiológico/genética , ADN Bacteriano/genética , Genes de Plantas , Estudios de Asociación Genética , Patrón de Herencia/genética , Modelos Genéticos , Mutación/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados
13.
Nat Genet ; 48(10): 1218-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27526322

RESUMEN

Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.


Asunto(s)
Brassica rapa/genética , Brassica/genética , Variación Genética , Selección Genética , Productos Agrícolas/genética , ADN de Plantas , Genoma de Planta , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Plant Physiol ; 170(1): 568-85, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518343

RESUMEN

Fatty acids in seeds affect seed germination and seedling vigor, and fatty acid composition determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acid and transcript abundance was integrated with gene network analysis to unravel the genetic regulation of seed fatty acid composition in a Brassica rapa doubled haploid population from a cross between a yellow sarson oil type and a black-seeded pak choi. The distribution of major QTLs for fatty acids showed a relationship with the fatty acid types: linkage group A03 for monounsaturated fatty acids, A04 for saturated fatty acids, and A05 for polyunsaturated fatty acids. Using a genetical genomics approach, expression quantitative trait locus (eQTL) hotspots were found at major fatty acid QTLs on linkage groups A03, A04, A05, and A09. An eQTL-guided gene coexpression network of lipid metabolism-related genes showed major hubs at the genes BrPLA2-ALPHA, BrWD-40, a number of seed storage protein genes, and the transcription factor BrMD-2, suggesting essential roles for these genes in lipid metabolism. Three subnetworks were extracted for the economically important and most abundant fatty acids erucic, oleic, linoleic, and linolenic acids. Network analysis, combined with comparison of the genome positions of cis- or trans-eQTLs with fatty acid QTLs, allowed the identification of candidate genes for genetic regulation of these fatty acids. The generated insights in the genetic architecture of fatty acid composition and the underlying complex gene regulatory networks in B. rapa seeds are discussed.


Asunto(s)
Brassica rapa/genética , Ácidos Grasos/química , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Semillas/genética , Brassica rapa/química , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Haploidia , Pigmentación/genética , Semillas/química
15.
Front Plant Sci ; 6: 1032, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648948

RESUMEN

The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding.

16.
PLoS One ; 10(12): e0145124, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26699853

RESUMEN

Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Hemípteros/fisiología , Sitios de Carácter Cuantitativo , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Brassica , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Desequilibrio de Ligamiento , Fenotipo
17.
PLoS One ; 9(12): e114241, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25474111

RESUMEN

Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.


Asunto(s)
Brassica rapa/genética , Variación Genética , Sitios de Carácter Cuantitativo/genética , Asia , Brassica rapa/anatomía & histología , Brassica rapa/química , Carbohidratos/química , Carbohidratos/aislamiento & purificación , Productos Agrícolas , Europa (Continente) , Flores/genética , Humanos , Fenotipo , Hojas de la Planta/genética , Raíces de Plantas/genética
18.
PLoS One ; 9(9): e107123, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222144

RESUMEN

Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.


Asunto(s)
Brassica rapa/metabolismo , Glucosinolatos/metabolismo , Redes y Vías Metabólicas , Brassica rapa/genética , Cromatografía Liquida , Flavonoides/metabolismo , Genoma de Planta , Espectrometría de Masas , Sitios de Carácter Cuantitativo , ARN Mensajero/metabolismo , Transcriptoma
19.
BMC Genomics ; 14: 840, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24289287

RESUMEN

BACKGROUND: Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. RESULTS: Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. CONCLUSIONS: This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.


Asunto(s)
Brassica/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Semillas/genética , Sitios de Unión , Brassica/metabolismo , Análisis por Conglomerados , Redes Reguladoras de Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Secuencias Reguladoras de Ácidos Nucleicos , Semillas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
20.
J Exp Bot ; 64(14): 4503-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24078668

RESUMEN

The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical-genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population.


Asunto(s)
Brassica rapa/genética , Brassica rapa/fisiología , Flores/genética , Flores/fisiología , Redes Reguladoras de Genes/genética , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Arabidopsis/genética , Arabidopsis/metabolismo , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Duplicados/genética , Genes de Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...