Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 191(3): 1803-1817, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36516417

RESUMEN

Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH varies, cyclic electron flow (CEF) between Photosystem I and the cytochrome b6f complex (b6f) produces extra ATP. b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 (proton gradient regulation 1) mutant of the vascular plant Arabidopsis (Arabidopsis thaliana), which contains a Pro194Leu substitution in the b6f Rieske Iron-sulfur protein Photosynthetic Electron Transfer C (PETC) subunit. In this work, we introduced the equivalent pgr1 mutation in the green alga Chlamydomonas reinhardtii to generate PETC-P171L. Consistent with the pgr1 phenotype, PETC-P171L displayed impaired NPQ induction along with slower photoautotrophic growth under high light conditions. Our data provide evidence that the ΔpH component in PETC-P171L depends on oxygen availability. Only under low oxygen conditions was the ΔpH component sufficient to trigger a phenotype in algal PETC-P171L where the mutant b6f was more restricted to oxidize the plastoquinol pool and showed diminished electron flow through the b6f complex. These results demonstrate that photosynthetic control of different stringency are established in C. reinhardtii depending on the cellular metabolism, and the lumen pH-sensitive PETC-P171L was generated to read out various associated effects.


Asunto(s)
Arabidopsis , Complejo de Citocromo b6f , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Protones , Electrones , NADP/metabolismo , Transporte de Electrón/fisiología , Fotosíntesis/genética , Oxidación-Reducción , Arabidopsis/genética , Arabidopsis/metabolismo , Adenosina Trifosfato/metabolismo , Oxígeno/metabolismo
2.
Plant Physiol ; 189(1): 329-343, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157085

RESUMEN

Linear electron flow (LEF) and cyclic electron flow (CEF) compete for light-driven electrons transferred from the acceptor side of photosystem I (PSI). Under anoxic conditions, such highly reducing electrons also could be used for hydrogen (H2) production via electron transfer between ferredoxin and hydrogenase in the green alga Chlamydomonas reinhardtii. Partitioning between LEF and CEF is regulated through PROTON-GRADIENT REGULATION5 (PGR5). There is evidence that partitioning of electrons also could be mediated via PSI remodeling processes. This plasticity is linked to the dynamics of PSI-associated light-harvesting proteins (LHCAs) LHCA2 and LHCA9. These two unique light-harvesting proteins are distinct from all other LHCAs because they are loosely bound at the PSAL pole. Here, we investigated photosynthetic electron transfer and H2 production in single, double, and triple mutants deficient in PGR5, LHCA2, and LHCA9. Our data indicate that lhca2 and lhca9 mutants are efficient in photosynthetic electron transfer, that LHCA2 impacts the pgr5 phenotype, and that pgr5/lhca2 is a potent H2 photo-producer. In addition, pgr5/lhca2 and pgr5/lhca9 mutants displayed substantially different H2 photo-production kinetics. This indicates that the absence of LHCA2 or LHCA9 impacts H2 photo-production independently, despite both being attached at the PSAL pole, pointing to distinct regulatory capacities.


Asunto(s)
Electrones , Complejo de Proteína del Fotosistema I , Transporte de Electrón , Hidrógeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Protones , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
3.
Biochem J ; 479(1): 111-127, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34981811

RESUMEN

The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent from stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.


Asunto(s)
Antimicina A/farmacología , Chlamydomonas reinhardtii/enzimología , Complejo de Citocromo b6f/metabolismo , Electrones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Tilacoides/enzimología , Antimicina A/metabolismo , Complejo de Citocromo b6f/antagonistas & inhibidores , Transporte de Electrón/efectos de los fármacos , Activación Enzimática , Ferredoxinas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Fosforilación/efectos de los fármacos , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Plastoquinona/metabolismo , Quinona Reductasas/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1862(8): 148434, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932368

RESUMEN

The chloroplast ATP synthase (CF1Fo) contains a specific feature to the green lineage: a γ-subunit redox domain that contains a cysteine couple which interacts with the torque-transmitting ßDELSEED-loop. This thiol modulation equips CF1Fo with an important environmental fine-tuning mechanism. In vitro, disulfide formation in the γ-redox domain slows down the activity of the CF1Fo at low transmembrane electrochemical proton gradient ( [Formula: see text] ), which agrees with its proposed role as chock based on recently solved structure. The γ-dithiol formation at the onset of light is crucial to maximize photosynthetic efficiency since it lowers the [Formula: see text] activation level for ATP synthesis in vitro. Here, we validate these findings in vivo by utilizing absorption spectroscopy in Arabidopsis thaliana. To do so, we monitored the [Formula: see text] present in darkness and identified its mitochondrial sources. By following the fate and components of light-induced extra [Formula: see text] , we estimated the ATP lifetime that lasted up to tens of minutes after long illuminations. Based on the relationship between [Formula: see text] and CF1Fo activity, we conclude that the dithiol configuration in vivo facilitates photosynthesis by driving the same ATP synthesis rate at a significative lower [Formula: see text] than in the γ-disulfide state. The presented in vivo findings are an additional proof of the importance of CF1Fo thiol modulation, reconciling biochemical in vitro studies and structural insights.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz , Compuestos de Sulfhidrilo/metabolismo , Arabidopsis/crecimiento & desarrollo , Oxidación-Reducción , Hojas de la Planta/crecimiento & desarrollo
5.
Plant J ; 103(3): 1140-1154, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32365245

RESUMEN

Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.


Asunto(s)
Cloroplastos/metabolismo , Glutatión Reductasa/metabolismo , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Bryopsida/enzimología , Bryopsida/metabolismo , Bryopsida/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Cloroplastos/enzimología , Cloroplastos/fisiología , Técnicas de Inactivación de Genes , Glutatión/metabolismo , Glutatión Reductasa/fisiología , Oxidación-Reducción
6.
Biochem J ; 477(9): 1631-1650, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32267468

RESUMEN

Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes - via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Fuerza Protón-Motriz
7.
Plant Physiol ; 179(2): 630-639, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30498023

RESUMEN

Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.


Asunto(s)
Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Complejo de Citocromo b6f/metabolismo , Oscuridad , Transporte de Electrón , Luz , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/genética , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Tilacoides/metabolismo , Regulación hacia Arriba
8.
J Biol Chem ; 293(45): 17559-17573, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30228184

RESUMEN

The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Complejo de Citocromo b6f/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Chlamydomonas reinhardtii/genética , Complejo de Citocromo b6f/genética , Complejo de Proteína del Fotosistema I/genética
9.
Biochim Biophys Acta Bioenerg ; 1858(12): 966-974, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28890176

RESUMEN

The chloroplast F1Fo-ATP synthase (CF1Fo) drives ATP synthesis and the reverse reaction of ATP hydrolysis. The enzyme evolved in a cellular environment where electron transfer processes and molecular oxygen are abundant, and thiol modulation in the γ-subunit via thioredoxin is important for its ATPase activity regulation. Especially under high light, oxygen can be reduced and forms reactive oxygen species (ROS) which can oxidize CF1Fo among various other biomolecules. Mutation of the conserved ROS targets resulted in a tolerant enzyme, suggesting that ROS might play a regulatory role. The mutations had several side effects in vitro, including disturbance of the ATPase redox regulation [F. Buchert et al., Biochim. Biophys. Acta, 1817 (2012) 2038-2048]. This would prevent disentanglement of thiol- and ROS-specific modes of regulation. Here, we used the F1 catalytic core in vitro to identify a point mutant with a functional ATPase redox regulation and increased H2O2 tolerance. In the next step, the mutation was introduced into Chlamydomonas reinhardtii CF1Fo, thereby allowing us to study the physiological role of ROS regulation of the enzyme in vivo. We demonstrated in high light experiments that CF1Fo ROS targets were involved in the significant inhibition of ATP synthesis rates. Molecular events upon modification of CF1Fo by ROS will be considered.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Cloroplastos/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón de Cloroplastos/química , ATPasas de Translocación de Protón de Cloroplastos/genética , Peróxido de Hidrógeno/química , ATPasas de Translocación de Protón Mitocondriales/química , Oxidación-Reducción , Mutación Puntual/genética , ATPasas de Translocación de Protón/química , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/genética
10.
Biochim Biophys Acta ; 1847(4-5): 441-450, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25660164

RESUMEN

The soluble F1 complex of ATP synthase (FoF1) is capable of ATP hydrolysis, accomplished by the minimum catalytic core subunits α3ß3γ. A special feature of cyanobacterial F1 and chloroplast F1 (CF1) is an amino acid sequence inserted in the γ-subunit. The insertion is extended slightly into the CF1 enzyme containing two additional cysteines for regulation of ATPase activity via thiol modulation. This molecular switch was transferred to a chimeric F1 by inserting the cysteine-containing fragment from spinach CF1 into a cyanobacterial γ-subunit [Y. Kim et al., redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch, J Biol Chem, 286 (2011) 9071-9078]. Under oxidizing conditions, the obtained F1 tends to lapse into an ADP-inhibited state, a common regulation mechanism to prevent wasteful ATP hydrolysis under unfavorable circumstances. However, the information flow between thiol modulation sites on the γ-subunit and catalytic sites on the ß-subunits remains unclear. Here, we clarified a possible interplay for the CF1-ATPase redox regulation between structural elements of the ßDELSEED-loop and the γ-subunit neck region, i.e., the most convex part of the α-helical γ-termini. Critical residues were assigned on the ß-subunit, which received the conformation change signal produced by disulfide/dithiol formation on the γ-subunit. Mutant response to the ATPase redox regulation ranged from lost to hypersensitive. Furthermore, mutant cross-link experiments and inversion of redox regulation indicated that the γ-redox state might modulate the subunit interface via reorientation of the ßDELSEED motif region.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/química , Cloroplastos/enzimología , Cianobacterias/enzimología , ATPasas de Translocación de Protón/química , Proteínas Recombinantes de Fusión/química , Spinacia oleracea/química , Compuestos de Sulfhidrilo/química , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Escherichia coli/genética , Hidrólisis , Mutación/genética , Oxidación-Reducción , Conformación Proteica , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Relación Estructura-Actividad
11.
Biochim Biophys Acta ; 1817(11): 2038-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22727877

RESUMEN

The vast majority of organisms produce ATP by a membrane-bound rotating protein complex, termed F-ATP synthase. In chloroplasts, the corresponding enzyme generates ATP by using a transmembrane proton gradient generated during photosynthesis, a process releasing high amounts of molecular oxygen as a natural byproduct. Due to its chemical properties, oxygen can be reduced incompletely which generates several highly reactive oxygen species (ROS) that are able to oxidize a broad range of biomolecules. In extension to previous studies it could be shown that ROS dramatically decreased ATP synthesis in situ and affected the CF1 portion in vitro. A conserved cluster of three methionines and a cysteine on the chloroplast γ subunit could be identified by mass spectrometry to be oxidized by ROS. Analysis of amino acid substitutions in a hybrid F1 assembly system indicated that these residues were exclusive catalytic targets for hydrogen peroxide and singlet oxygen, although it could be deduced that additional unknown amino acid targets might be involved in the latter reaction. The cluster was tightly integrated in catalytic turnover since mutants varied in MgATPase rates, stimulation by sulfite and chloroplast-specific γ subunit redox-modulation. Some partial disruptions of the cluster by mutagenesis were dominant over others regarding their effects on catalysis and response to ROS.


Asunto(s)
Adenosina Trifosfato/química , ATPasas de Translocación de Protón de Cloroplastos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Tilacoides/enzimología , Secuencia de Aminoácidos , ATPasas de Translocación de Protón de Cloroplastos/química , Peróxido de Hidrógeno/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Subunidades de Proteína , Oxígeno Singlete/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Sulfitos/farmacología
12.
FEBS Lett ; 584(1): 147-52, 2010 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-19925794

RESUMEN

Singlet oxygen ((1)O(2)) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of (1)O(2) generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to (1)O(2) than CF1CFo in its reduced state, a new insight on the mechanism of (1)O(2) interaction with the gamma subunit.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/antagonistas & inhibidores , Protones , Oxígeno Singlete/metabolismo , Tilacoides/enzimología , Adenosina Trifosfato/metabolismo , Membrana Celular/enzimología , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cisteína/metabolismo , Hidrólisis , Magnesio/metabolismo , Oxidación-Reducción , Rosa Bengala/farmacología , Spinacia oleracea/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...