Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0294003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781157

RESUMEN

Cofactors interacting with PPARγ can regulate adipogenesis and adipocyte metabolism by modulating the transcriptional activity and selectivity of PPARγ signaling. ZFP407 was previously demonstrated to regulate PPARγ target genes such as GLUT4, and its overexpression improved glucose homeostasis in mice. Here, using a series of molecular assays, including protein-interaction studies, mutagenesis, and ChIP-seq, ZFP407 was found to interact with the PPARγ/RXRα protein complex in the nucleus of adipocytes. Consistent with this observation, ZFP407 ChIP-seq peaks significantly overlapped with PPARγ ChIP-seq peaks, with more than half of ZFP407 peaks overlapping with PPARγ peaks. Transcription factor binding motifs enriched in these overlapping sites included CTCF, RARα/RXRγ, TP73, and ELK1, which regulate cellular development and function within adipocytes. Site-directed mutagenesis of frequent PPARγ phosphorylation or SUMOylation sites did not prevent its regulation by ZFP407, while mutagenesis of ZFP407 domains potentially necessary for RXR and PPARγ binding abrogated any impact of ZFP407 on PPARγ activity. These data suggest that ZFP407 controls the activity of PPARγ, but does so independently of post-translational modifications, likely by direct binding, establishing ZFP407 as a newly identified PPARγ cofactor. In addition, ZFP407 ChIP-seq analyses identified regions that did not overlap with PPARγ peaks. These non-overlapping peaks were significantly enriched for the transcription factor binding motifs of TBX19, PAX8, HSF4, and ZKSCAN3, which may contribute to the PPARγ-independent functions of ZFP407 in adipocytes and other cell types.


Asunto(s)
Adipocitos , PPAR gamma , Receptor alfa X Retinoide , Transducción de Señal , PPAR gamma/metabolismo , PPAR gamma/genética , Animales , Ratones , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/genética , Adipocitos/metabolismo , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica , Células 3T3-L1 , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Sumoilación , Sitios de Unión , Fosforilación
2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496622

RESUMEN

Adipocytes play a critical role in metabolic homeostasis. Peroxisome proliferator-activated receptor- γ (PPAR γ ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 was predicted to interact with PPAR γ based on large-scale protein interaction experiments. In addition, GWAS studies in the type 2 diabetes (T2D) Knowledge Portal revealed associations between Z btb9 and both BMI and T2D risk. Here we show that ZBTB9 positively regulates PPAR γ activity in mature adipocytes. Surprisingly Z btb9 knockdown (KD) also increased adipogenesis in 3T3-L1 cells and human preadipocytes. E2F activity was increased and E2F downstream target genes were upregulated in Zbtb9 -KD preadipocytes. Accordingly, RB phosphorylation, which regulates E2F activity, was enhanced in Zbtb9 -KD preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenic gene expression and lipid accumulation. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via altered RB-E2F1 signaling. Our findings reveal complex cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipogenesis and adipocyte biology as both a positive and negative regulator of PPAR γ signaling depending on the cellular context, and thus may be important in the pathogenesis and treatment of obesity and T2D.

3.
Front Pharmacol ; 13: 902254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721135

RESUMEN

A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid ß plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.

4.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882480

RESUMEN

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Asunto(s)
Catarata/patología , Senescencia Celular , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cristalino/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Envejecimiento Prematuro , Animales , Evolución Biológica , Proteínas de Unión al Calcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
FASEB J ; 35(11): e21990, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34665898

RESUMEN

Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.


Asunto(s)
Metabolismo de los Lípidos , Longevidad , Síndrome Metabólico/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales
6.
Sci Transl Med ; 13(609): eaaz4499, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34516821

RESUMEN

Osteoarthritis (OA) is the most prevalent joint disorder, causing pain and disability predominantly in the aging population but also affecting young individuals. Current treatments are limited to use of anti-inflammatory drugs to alleviate symptoms or degenerated joint replacement by a prosthetic implant at the end stage of the disease. We hypothesized that degenerative cartilage defects can be treated using nasal chondrocyte­based tissue-engineered cartilage (N-TEC). We demonstrate that N-TEC maintained cartilaginous properties when exposed in vitro to inflammatory stimuli found in osteoarthritic joints and favorably altered the inflammatory profile of cells from osteoarthritic joints. These effects were at least partially mediated by down-regulation of the WNT (wingless/integrated) signaling pathway through sFRP1 (secreted frizzled-related protein-1). We further report that N-TEC survive and engraft in vivo in ectopic mouse models reproducing a human osteochondral OA tissue environment, as well as in sheep articular cartilage defects that mimic degenerative settings. Last, we tested the safety of autologous N-TEC for the treatment of osteoarthritic cartilage defects in the knees of two patients with advanced OA (Kellgren and Lawrence grades 3 and 4) who were otherwise considered for unicondylar knee arthroplasty. No adverse reactions were recorded, and patients reported reduced pain as well as improved joint function and life quality 14 months after surgery. Together, our findings indicate that N-TEC can directly contribute to cartilage repair in osteoarthritic joints. A suitably powered clinical trial is now required to assess its efficacy in the treatment of patients with OA.


Asunto(s)
Cartílago Articular , Condrocitos , Articulación de la Rodilla , Cartílagos Nasales
7.
Mol Cell Endocrinol ; 521: 111109, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33285243

RESUMEN

PPARγ deficiency in humans and model organisms impairs the transcriptional control of adipogenesis and mature adipocyte function resulting in lipodystrophy and insulin resistance. Zinc finger protein 407 (ZFP407) positively regulates PPARγ target gene expression and insulin-stimulated glucose uptake in cultured adipocytes. The in vivo physiological role of ZFP407 in mature adipocytes, however, remains to be elucidated. Here we generated adipocyte-specific ZFP407 knockout (AZKO) mice and discovered a partial lipodystrophic phenotype with reduced fat mass, hypertrophic adipocytes in inguinal and brown adipose tissue, and reduced adipogenic gene expression. The lipodystrophy was further exacerbated in AZKO mice fed a high-fat diet. Glucose and insulin tolerance tests revealed decreased insulin sensitivity in AZKO mice compared to control littermates. Cell-based assays demonstrated that ZFP407 is also required for adipogenesis, which may also contribute to the lipodystrophic phenotype. These results demonstrate an essential in vivo role of ZFP407 in brown and white adipose tissue formation and organismal insulin sensitivity.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Resistencia a la Insulina/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Células 3T3 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Desarrollo Embrionario/genética , Femenino , Regulación de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño
8.
G3 (Bethesda) ; 10(12): 4553-4563, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023974

RESUMEN

The genetic contribution of additive vs. non-additive (epistatic) effects in the regulation of complex traits is unclear. While genome-wide association studies typically ignore gene-gene interactions, in part because of the lack of statistical power for detecting them, mouse chromosome substitution strains (CSSs) represent an alternate approach for detecting epistasis given their limited allelic variation. Therefore, we utilized CSSs to identify and map both additive and epistatic loci that regulate a range of hematologic- and metabolism-related traits, as well as hepatic gene expression. Quantitative trait loci (QTL) were identified using a CSS-based backcross strategy involving the segregation of variants on the A/J-derived substituted chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. In the liver transcriptomes of offspring from this cross, we identified and mapped additive QTL regulating the hepatic expression of 768 genes, and epistatic QTL pairs for 519 genes. Similarly, we identified additive QTL for fat pad weight, platelets, and the percentage of granulocytes in blood, as well as epistatic QTL pairs controlling the percentage of lymphocytes in blood and red cell distribution width. The variance attributed to the epistatic QTL pairs was approximately equal to that of the additive QTL; however, the SNPs in the epistatic QTL pairs that accounted for the largest variances were undetected in our single locus association analyses. These findings highlight the need to account for epistasis in association studies, and more broadly demonstrate the importance of identifying genetic interactions to understand the complete genetic architecture of complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Animales , Cromosomas/genética , Epistasis Genética , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo
9.
Elife ; 92020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32175843

RESUMEN

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Asunto(s)
Proteínas Portadoras/metabolismo , Presión Osmótica , Proteínas de Unión al ARN/metabolismo , eIF-2 Quinasa/metabolismo , Adaptación Fisiológica , Animales , Proteínas Portadoras/genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Transducción de Señal , eIF-2 Quinasa/genética
10.
Endocrinology ; 160(10): 2353-2366, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393557

RESUMEN

Primary ovarian insufficiency (POI) is defined by the loss or dysfunction of ovarian follicles associated with amenorrhea before the age of 40. Symptoms include hot flashes, sleep disturbances, and depression, as well as reduced fertility and increased long-term risk of cardiovascular disease. POI occurs in ∼1% to 2% of women, although the etiology of most cases remains unexplained. Approximately 10% to 20% of POI cases are due to mutations in a single gene or a chromosomal abnormality, which has provided considerable molecular insight into the biological underpinnings of POI. Many of the genes for which mutations have been associated with POI, either isolated or syndromic cases, function within mitochondria, including MRPS22, POLG, TWNK, LARS2, HARS2, AARS2, CLPP, and LRPPRC. Collectively, these genes play roles in mitochondrial DNA replication, gene expression, and protein synthesis and degradation. Although mutations in these genes clearly implicate mitochondrial dysfunction in rare cases of POI, data are scant as to whether these genes in particular, and mitochondrial dysfunction in general, contribute to most POI cases that lack a known etiology. Further studies are needed to better elucidate the contribution of mitochondria to POI and determine whether there is a common molecular defect in mitochondrial function that distinguishes mitochondria-related genes that when mutated cause POI vs those that do not. Nonetheless, the clear implication of mitochondrial dysfunction in POI suggests that manipulation of mitochondrial function represents an important therapeutic target for the treatment or prevention of POI.


Asunto(s)
Infertilidad Femenina/metabolismo , Enfermedades Mitocondriales/fisiopatología , Insuficiencia Ovárica Primaria/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos
11.
J Clin Endocrinol Metab ; 104(10): 4676-4682, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31162547

RESUMEN

BACKGROUND: Somatic mutations in the ubiquitin-specific peptidase 8 (USP8) gene are common in corticotropinomas of children with Cushing disease (CD). We report a unique patient with a germline USP8 mutation who presented with CD and a constellation of other findings that constitute an intriguing genetic syndrome. CASE DESCRIPTION: We describe a 16-year-old female with CD, developmental delay, dysmorphic features, ichthyosiform hyperkeratosis, chronic lung disease, chronic kidney disease, hyperglycemia, dilated cardiomyopathy with congestive heart failure, and previous history of hyperinsulinism and partial GH deficiency. She was diagnosed with CD at 14 years old and underwent transsphenoidal surgery. Despite initial improvement, she developed recurrent CD. METHODS: DNA was extracted from peripheral blood and tumor DNA; whole-exome and Sanger confirmatory sequencing were performed. Immunohistochemistry was performed on the resected adenoma. RESULTS: A de novo germline heterozygous USP8 mutation (c.2155T>C, p.S719P) in the critical 14-3-3 binding motif hot spot locus of the gene was identified in both the peripheral blood and tumor DNA. Histopathologic evaluation of the resected tumor confirmed an ACTH-secreting adenoma. CONCLUSION: Somatic USP8 mutations are common in adenomas causing CD, but to date, no germline defects have been reported. We describe a patient with a de novo germline USP8 mutation with recurrent CD and multiple other medical problems. This unique patient informs us of the multitude of signaling events that may be controlled by USP8.


Asunto(s)
Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mutación de Línea Germinal , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/complicaciones , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Ubiquitina Tiolesterasa/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adolescente , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Humanos , Fenotipo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Síndrome
12.
PLoS Genet ; 15(4): e1008088, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034465

RESUMEN

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Catarata/genética , Trastornos de la Motilidad Ciliar/genética , Enanismo/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Adolescente , Adulto , Niño , Consanguinidad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Linaje , Fenotipo , Adulto Joven
13.
Sci Rep ; 8(1): 7324, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743621

RESUMEN

Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.


Asunto(s)
Apoptosis/genética , Ciclo Celular/genética , Neoplasias del Colon/patología , ARN Largo no Codificante/genética , Regulación hacia Arriba/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/genética , Daño del ADN/genética , Técnicas de Silenciamiento del Gen , Genómica , Humanos , ARN Largo no Codificante/metabolismo
14.
Hum Mol Genet ; 27(11): 1913-1926, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29566152

RESUMEN

Primary ovarian insufficiency (POI) is characterized by amenorrhea and loss or dysfunction of ovarian follicles prior to the age of 40. POI has been associated with autosomal recessive mutations in genes involving hormonal signaling and folliculogenesis, however, the genetic etiology of POI most often remains unknown. Here we report MRPS22 homozygous missense variants c.404G>A (p.R135Q) and c.605G>A (p.R202H) identified in four females from two independent consanguineous families as a novel genetic cause of POI in adolescents. Both missense mutations identified in MRPS22 are rare, occurred in highly evolutionarily conserved residues, and are predicted to be deleterious to protein function. In contrast to prior reports of mutations in MRPS22 associated with severe mitochondrial disease, the POI phenotype is far less severe. Consistent with this genotype-phenotype correlation, mitochondrial defects in oxidative phosphorylation or rRNA levels were not detected in fibroblasts derived from the POI patients, suggesting a non-bioenergetic or tissue-specific mitochondrial defect. Furthermore, we demonstrate in a Drosophila model that mRpS22 deficiency specifically in somatic cells of the ovary had no effect on fertility, whereas flies with mRpS22 deficiency specifically in germ cells were infertile and agametic, demonstrating a cell autonomous requirement for mRpS22 in germ cell development. These findings collectively identify that MRPS22, a component of the small mitochondrial ribosome subunit, is critical for ovarian development and may therefore provide insight into the pathophysiology and treatment of ovarian dysfunction.


Asunto(s)
Proteínas de Drosophila/genética , Fertilidad/genética , Proteínas Mitocondriales/genética , Insuficiencia Ovárica Primaria/genética , Proteínas Ribosómicas/genética , Adolescente , Adulto , Amenorrea/genética , Amenorrea/patología , Animales , Modelos Animales de Enfermedad , Drosophila/genética , Femenino , Fertilidad/fisiología , Homocigoto , Humanos , Menopausia Prematura/genética , Mutación Missense/genética , Folículo Ovárico/patología , Insuficiencia Ovárica Primaria/patología , Adulto Joven
15.
PLoS Genet ; 13(9): e1007025, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28961251

RESUMEN

The relative contributions of additive versus non-additive interactions in the regulation of complex traits remains controversial. This may be in part because large-scale epistasis has traditionally been difficult to detect in complex, multi-cellular organisms. We hypothesized that it would be easier to detect interactions using mouse chromosome substitution strains that simultaneously incorporate allelic variation in many genes on a controlled genetic background. Analyzing metabolic traits and gene expression levels in the offspring of a series of crosses between mouse chromosome substitution strains demonstrated that inter-chromosomal epistasis was a dominant feature of these complex traits. Epistasis typically accounted for a larger proportion of the heritable effects than those due solely to additive effects. These epistatic interactions typically resulted in trait values returning to the levels of the parental CSS host strain. Due to the large epistatic effects, analyses that did not account for interactions consistently underestimated the true effect sizes due to allelic variation or failed to detect the loci controlling trait variation. These studies demonstrate that epistatic interactions are a common feature of complex traits and thus identifying these interactions is key to understanding their genetic regulation.


Asunto(s)
Glucemia/metabolismo , Epistasis Genética , Regulación de la Expresión Génica , Homeostasis , Alelos , Animales , Metabolismo de los Hidratos de Carbono/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Análisis de Secuencia de ARN
16.
J Biol Chem ; 292(36): 14827-14835, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726642

RESUMEN

The breakdown of stored fat deposits into its components is a highly regulated process that maintains plasma levels of free fatty acids to supply energy to cells. Insulin-mediated transcription of Atgl, the enzyme that mediates the rate-limiting step in lipolysis, is a key point of this regulation. Under conditions such as obesity or insulin resistance, Atgl transcription is often misregulated, which can contribute to overall disease progression. The mechanisms by which Atgl is induced during adipogenesis are not fully understood. We utilized computational approaches to identify putative transcriptional regulatory elements in Atgl and then tested the effect of these elements and the transcription factors that bind to them in cultured preadipocytes and mature adipocytes. Here we report that Atgl is down-regulated by the basal transcription factor Sp1 in preadipocytes and that the magnitude of down-regulation depends on interactions between Sp1 and peroxisome proliferator-activated receptor γ (PPARγ). In mature adipocytes, when PPARγ is abundant, PPARγ abrogated transcriptional repression by Sp1 at the Atgl promoter and up-regulated Atgl mRNA expression. Targeting the PPARγ-Sp1 interaction could be a potential therapeutic strategy to restore insulin sensitivity by modulating Atgl levels in adipocytes.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Lipasa/genética , PPAR gamma/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Células 3T3-L1 , Animales , Línea Celular , Regulación hacia Abajo , Células HEK293 , Humanos , Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida
17.
Am J Physiol Endocrinol Metab ; 311(5): E869-E880, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624101

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease.


Asunto(s)
Glucemia/metabolismo , Proteínas de Unión al ADN/genética , Transportador de Glucosa de Tipo 4/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Animales , Dieta Alta en Grasa , Perfilación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Homeostasis/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
18.
Semin Cell Dev Biol ; 43: 131-140, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25937492

RESUMEN

Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from Caenorhabditis elegans to Mus musculus to Sus scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment.


Asunto(s)
Epigénesis Genética/genética , Patrón de Herencia/genética , Enfermedades Metabólicas/genética , Obesidad/genética , Animales , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Obesidad/metabolismo , Ratas , Sus scrofa/genética
19.
Genome Res ; 25(6): 775-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953951

RESUMEN

Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.


Asunto(s)
Genotipo , Ratones Endogámicos/genética , Fenotipo , Sitios de Carácter Cuantitativo , Animales , Cromosomas/genética , Cruzamientos Genéticos , Epigenómica , Epistasis Genética , Redes Reguladoras de Genes , Estudios de Asociación Genética , Técnicas de Genotipaje , Ensayos Analíticos de Alto Rendimiento , Humanos , Metaanálisis como Asunto , Ratones
20.
J Biol Chem ; 290(10): 6376-86, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25596527

RESUMEN

The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/biosíntesis , Glucosa/metabolismo , Insulina/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/patología , Animales , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica/genética , Transportador de Glucosa de Tipo 4/genética , Humanos , Ratones , PPAR gamma/biosíntesis , ARN Mensajero/biosíntesis , Transducción de Señal/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...