Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839778

RESUMEN

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Asunto(s)
Neoplasias , Proteómica , Biomarcadores de Tumor/genética , Línea Celular , Humanos , Neoplasias/genética , Proteoma/metabolismo , Proteómica/métodos
2.
Gut Microbes ; 12(1): 1802209, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991816

RESUMEN

The colonic mucus layer, comprised of highly O-glycosylated mucins, is vital to mediating host-gut microbiota interactions, yet the impact of dietary changes on colonic mucin O-glycosylation and its associations with the gut microbiota remains unexplored. Here, we used an array of omics techniques including glycomics to examine the effect of dietary fiber consumption on the gut microbiota, colonic mucin O-glycosylation and host physiology of high-fat diet-fed C57BL/6J mice. The high-fat diet group had significantly impaired glucose tolerance and altered liver proteome, gut microbiota composition, and short-chain fatty acid production compared to normal chow diet group. While dietary fiber inclusion did not reverse all high fat-induced modifications, it resulted in specific changes, including an increase in the relative abundance of bacterial families with known fiber digesters and a higher propionate concentration. Conversely, colonic mucin O-glycosylation remained similar between the normal chow and high-fat diet groups, while dietary fiber intervention resulted in major alterations in O-glycosylation. Correlation network analysis revealed previously undescribed associations between specific bacteria and mucin glycan structures. For example, the relative abundance of the bacterium Parabacteroides distasonis positively correlated with glycan structures containing one terminal fucose and correlated negatively with glycans containing two terminal fucose residues or with both an N-acetylneuraminic acid and a sulfate residue. This is the first comprehensive report of the impact of dietary fiber on the colonic mucin O-glycosylation and associations of these mucosal glycans with specific gut bacteria.


Asunto(s)
Bacterias/aislamiento & purificación , Colon/microbiología , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal , Mucinas/metabolismo , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL , Mucinas/química , Polisacáridos/metabolismo
3.
Methods Mol Biol ; 1888: 141-152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30519945

RESUMEN

This chapter provides a detailed description for mass spectrometry-based phosphoproteomics analysis. We describe sample preparation, phosphopeptide enrichment, mass spectrometry acquisition, label-free data analysis and statistical analysis. This technique can be employed to characterize cell signaling networks, and is particularly useful to monitor cellular responses to kinase drug inhibitors.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Fosfoproteínas/metabolismo , Fosfotransferasas/antagonistas & inhibidores , Proteómica , Cromatografía Liquida , Descubrimiento de Drogas/métodos , Humanos , Espectrometría de Masas , Fosfopéptidos/metabolismo , Proteómica/métodos
4.
Front Microbiol ; 9: 1618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072976

RESUMEN

There is growing public interest in the use of fiber supplements as a way of increasing dietary fiber intake and potentially improving the gut microbiota composition and digestive health. However, currently there is limited research into the effects of commercially available fiber supplements on the gut microbiota. Here we used an in vitro human digestive and gut microbiota model system to investigate the effect of three commercial fiber products; NutriKane™, Benefiber® and Psyllium husk (Macro) on the adult gut microbiota. The 16S rRNA gene amplicon sequencing results showed dramatic fiber-dependent changes in the gut microbiota structure and composition. Specific bacterial OTUs within the families Bacteroidaceae, Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, and Bifidobacteriaceae showed an increase in the relative abundances in the presence of one or more fiber product(s), while Enterobacteriaceae and Pseudomonadaceae showed a reduction in the relative abundances upon addition of all fiber treatments compared to the no added fiber control. Fiber-specific increases in SCFA concentrations showed correlation with the relative abundance of potential SCFA-producing gut bacteria. The chemical composition, antioxidant potential and polyphenolic content profiles of each fiber product were determined and found to be highly variable. Observed product-specific variations could be linked to differences in the chemical composition of the fiber products. The general nature of the fiber-dependent impact was relatively consistent across the individuals, which may demonstrate the potential of the products to alter the gut microbiota in a similar, and predictable direction, despite variability in the starting composition of the individual gut microbiota.

5.
J Proteomics ; 177: 1-10, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432917

RESUMEN

Sugarcane is an important crop grown in tropical regions for sugar, and for ethanol production. Sugarcane is also a source of phytochemicals but its nutraceutical potential has been under-explored. We show that ethanol extracts of whole dried sugarcane (WDS) recovers a rich content of polyphenols, flavonoids and antioxidant activity that act on inflammatory mediator proteins. To investigate the mechanisms of this activity, we stimulated SW480 colon cancer cells with lipopolysaccharide, exposed cells to WDS and quantitated changes to the proteome and phosphoproteome using label-free mass spectrometry. The grape-derived anti-inflammatory polyphenol, resveratrol (RSV) was used as a control. Using SWATH-MS we quantitated ~3000 proteins showing that WDS significantly altered the expression of the oxidative stress regulator SELH. WDS induced changes in protein expression predicted the involvement of NFκB pathway members. Reduced NFκB phosphorylation and IL-8 secretion confirmed this effect. In contrast, RSV was predicted to act primarily through modulation of the PI3K/AKT pathway. Phosphoproteomics studies indicate that WDS interfered in the phosphorylation of cell stress regulators c-Jun, EGFR, PKA, PKCß and SIRT1. Confirmed through pharmacological inhibition, kinase enrichment analysis presented C-Raf to modulate WDS activity. These results demonstrate the anti-inflammatory utility of WSD and define aspects of its mechanisms of action. SIGNIFICANCE: Despite the increasing interest of nutraceuticals in health promotion, scientific evidence proving the molecular mechanisms involved is still lacking. This study investigated some of the mechanistic aspects of in vitro use of whole dried sugarcane extracts in the context of regulating cellular inflammation by using proteomics and phosphoproteomics strategies. We determined that WDS extracts regulate key inflammatory pathways including NFκB, while kinase enrichment analysis from phosphoproteomics demonstrated a role for C-Raf in controlling this mechanism. We demonstrated that the mechanism of WDS extracts on controlling inflammation differs from that of the polyphenol, resveratrol. The results presented herein contribute towards unravelling the activity of nutraceuticals extracted from sugarcane.


Asunto(s)
Neoplasias del Colon/patología , Mediadores de Inflamación/antagonistas & inhibidores , Extractos Vegetales/química , Polifenoles/farmacología , Saccharum/química , Antiinflamatorios , Línea Celular Tumoral , Neoplasias del Colon/química , Humanos , Interleucina-8/metabolismo , Espectrometría de Masas , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/análisis , Fosfoproteínas/efectos de los fármacos , Proteoma/análisis , Proteoma/efectos de los fármacos , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...