Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 12(36): 12107-12117, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667576

RESUMEN

Conjugated molecular chains have the potential to act as "molecular wires" that can be employed in a variety of technologies, including catalysis, molecular electronics, and quantum information technologies. Their successful application relies on a detailed understanding of the factors governing the electronic energy landscape and the dynamics of electrons in such molecules. We can gain insights into the energetics and dynamics of charges in conjugated molecules using time-resolved infrared (TRIR) detection combined with pulse radiolysis. Nitrile ν(C[triple bond, length as m-dash]N) bands can act as IR probes for charges, based on IR frequency shifts, because of their exquisite sensitivity to the degree of electron delocalization and induced electric field. Here, we show that the IR intensity and linewidth can also provide unique and complementary information on the nature of charges. Quantifications of IR intensity and linewidth in a series of nitrile-functionalized oligophenylenes reveal that the C[triple bond, length as m-dash]N vibration is coupled to the nuclear and electronic structural changes, which become more prominent when an excess charge is present. We synthesized a new series of ladder-type oligophenylenes that possess planar aromatic structures, as revealed by X-ray crystallography. Using these, we demonstrate that C[triple bond, length as m-dash]N vibrations can report charge fluctuations associated with nuclear movements, namely those driven by motions of flexible dihedral angles. This happens only when a charge has room to fluctuate in space.

2.
J Am Chem Soc ; 142(49): 20691-20700, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33256409

RESUMEN

Magnetic control of molecular emission holds the promise of developing new magneto-optical technologies. Spin dynamics of radical pairs can serve as a basis of control of chemical reactions by weak magnetic fields (<1 T) orders of magnitude smaller than the thermal energy kBT at room temperature. Here we demonstrate control of recombination fluorescence, produced by charge recombination of photogenerated radical pairs, by weak magnetic fields in rigid donor-bridge-acceptor molecules excited with visible light. We can tune the field response range by chemically modulating the energies of the radical pairs affecting exchange interactions. Our results present a new strategy for designing magneto-optical probes for imaging and other molecular spin technology applications.

3.
Bioorg Med Chem Lett ; 30(16): 127257, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631505

RESUMEN

N-[18F]fluoroacetylcrizotinib, a fluorine-18 labeled derivative of the first FDA approved tyrosine kinase inhibitor (TKI) for the treatment of Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), crizotinib, was successfully synthesized for use in positron emission tomography (PET). Sequential in vitro biological evaluation of fluoracetylcrizotinib and in vivo biodistribution studies of [18F]fluoroacetylcrizotinib demonstrated that the biological activity of the parent compound remained unchanged, with potent ALK kinase inhibition and effective tumor growth inhibition. These results show that [18F]fluoroacetylcrizotinib has the potential to be a promising PET ligand for use in NSCLC imaging. The utility of PET in this context provides a non-invasive, quantifiable method to inform on the pharmacokinetics of an ALK-inhibitor such as crizotinib prior to a clinical trial, as well as during a trial in the event of acquired drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Crizotinib/química , Neoplasias Pulmonares/diagnóstico por imagen , Imagen Molecular , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/química , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/síntesis química , Crizotinib/farmacología , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Humanos , Neoplasias Pulmonares/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad
4.
J Phys Chem Lett ; 10(11): 3080-3086, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31117690

RESUMEN

Charge recombination to the electronic ground state typically occurs nonradiatively. We report a rational design of donor-bridge-acceptor molecules that exhibit charge-transfer (CT) emission through conjugated bridges over distances of up to 24 Å. The emission is enhanced by intensity borrowing and extends into the near-IR region. Efficient charge recombination to the initial excited state results in recombination fluorescence. We have established the identity of CT emission by solvent dependence, sensitivity to temperature, femtosecond transient absorption spectroscopy, and unique emission polarization patterns. Large excited-state electronic couplings and small energy gaps enable the observation of intramolecular long-range CT emission over the unprecedented long distance. These results open new possibilities of using intramolecular long-range CT emission in molecular electronic and biomedical imaging probe applications.

5.
Mol Imaging Biol ; 19(4): 578-588, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27853987

RESUMEN

PURPOSE: Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES: VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS: Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS: The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.


Asunto(s)
Proteínas Portadoras/metabolismo , Diagnóstico por Imagen , Radioisótopos de Flúor/química , Glioma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Línea Celular Tumoral , Radioisótopos de Flúor/farmacocinética , Glioma/patología , Ligandos , Masculino , Ratones Endogámicos C57BL , Ratas , Distribución Tisular , Imagen de Cuerpo Entero
6.
Sci Rep ; 6: 33926, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671553

RESUMEN

Ewing sarcoma is a bone and soft-tissue tumor that depends on the activity of the EWS-FLI1 transcription factor for cell survival. Although a number of compounds have been shown to inhibit EWS-FLI1 in vitro, a clinical EWS-FLI1-directed therapy has not been achieved. One problem plaguing drug development efforts is the lack of a suitable, non-invasive, pharmacodynamic marker of EWS-FLI1 activity. Here we show that 18F-FLT PET (18F- 3'-deoxy-3'-fluorothymidine positron emission tomography) reflects EWS-FLI1 activity in Ewing sarcoma cells both in vitro and in vivo. 18F-FLT is transported into the cell by ENT1 and ENT2, where it is phosphorylated by TK1 and trapped intracellularly. In this report, we show that silencing of EWS-FLI1 with either siRNA or small-molecule EWS-FLI1 inhibitors suppressed the expression of ENT1, ENT2, and TK1 and thus decreased 18F-FLT PET activity. This effect was not through a generalized loss in viability or metabolic suppression, as there was no suppression of 18F-FDG PET activity and no suppression with chemotherapy. These results provide the basis for the clinical translation of 18F-FLT as a companion biomarker of EWS-FLI1 activity and a novel diagnostic imaging approach for Ewing sarcoma.

7.
J Nucl Med ; 57 Suppl 1: 60S-8S, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26834104

RESUMEN

Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Modelos Animales de Enfermedad , Neoplasias Mamarias Experimentales/diagnóstico , Neoplasias Mamarias Experimentales/terapia , Imagen Molecular/tendencias , Animales , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Trasplante de Neoplasias , Medicina de Precisión , Cintigrafía
8.
Mol Imaging Biol ; 18(1): 18-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25971659

RESUMEN

PURPOSE: Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[(18)F]Fluoroglutamine (4-[(18)F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression. PROCEDURES: In vivo microPET studies of 4-[(18)F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting. RESULT: 4-[(18)F]Fluoro-Gln uptake, but not 2-deoxy-2-[(18)F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[(18)F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues. CONCLUSIONS: 4-[(18)F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Glutamina/análogos & derivados , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Receptores ErbB/genética , Femenino , Glutamina/metabolismo , Humanos , Masculino , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Mutación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
PLoS One ; 10(10): e0141659, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517124

RESUMEN

Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Acetanilidas/farmacología , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Radiofármacos/farmacología , Ratas , Sensibilidad y Especificidad , Análisis de Matrices Tisulares/métodos
10.
Appl Radiat Isot ; 97: 47-51, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25531913

RESUMEN

INTRODUCTION: High-yielding, automated production of a PET tracer that reflects proliferation, 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), is reported using a modified Bioscan Coincidence FDG reaction module. METHODS: Production of [(18)F]FLT was implemented through: (1) modification of an original FDG manifold; (2) application of an alternate time sequence; and (3) altered solid-phase extraction (SPE) purification. Quality control testing, including standard radiochemical figures of merit and preclinical positron emission tomography (PET) imaging, was carried out. RESULTS: High decay-corrected yields of [(18)F]FLT (16-39%) were reproducibly obtained. The product exhibited very high specific activity (4586.9TBq/mmol; 123,969Ci/mmol) and radiochemical purity (>99%). Overall, the [(18)F]FLT produced in this manner was superior to typical productions that utilized a GE TRACERlab FXF-N reaction module. Additionally, purification with SPE cartridges, followed by manual elution, accelerated overall run time and resulted in a two-fold increase in [(18)F]FLT concentration. PET imaging showed the [(18)F]FLT produced by this method was highly suitable for non-invasive tumor imaging in mice. CONCLUSIONS: The Bioscan Coincidence GE FDG Reaction Module was readily adapted to reproducibly provide [(18)F]FLT in high yield, specific activity, and radiochemical purity. The approach was suitable to provide sufficient amounts of material for preclinical studies.


Asunto(s)
Didesoxinucleósidos/síntesis química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Animales , Neoplasias Colorrectales/diagnóstico por imagen , Didesoxinucleósidos/normas , Células HCT116 , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Control de Calidad , Radioquímica/instrumentación , Radioquímica/métodos , Radiofármacos/normas
11.
Bioorg Med Chem Lett ; 24(18): 4466-4471, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25172419

RESUMEN

A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity. In vivo studies of [(18)F]-14 revealed this agent as a promising probe for molecular imaging of glioma.


Asunto(s)
Acetamidas/síntesis química , Descubrimiento de Drogas , Glioma/diagnóstico , Indoles/síntesis química , Imagen Molecular , Tomografía de Emisión de Positrones , Receptores de GABA/análisis , Acetamidas/química , Acetamidas/farmacología , Animales , Humanos , Indoles/química , Indoles/farmacología , Ligandos , Masculino , Estructura Molecular , Ratas , Ratas Wistar , Receptores de GABA/biosíntesis
12.
Mol Imaging Biol ; 16(6): 813-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24845529

RESUMEN

PURPOSE: Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [(18)F]VUIIS1008, in healthy mice and glioma-bearing rats. PROCEDURES: Dynamic PET data were acquired simultaneously with [(18)F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS: [(18)F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [(18)F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [(18)F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [(18)F]DPA-714. CONCLUSIONS: The PET ligand [(18)F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteínas Portadoras/metabolismo , Radioisótopos de Flúor , Glioma/metabolismo , Tomografía de Emisión de Positrones/métodos , Pirazoles , Pirimidinas , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Radioisótopos de Flúor/farmacocinética , Glioma/diagnóstico por imagen , Glioma/patología , Ligandos , Ratones , Ratones Endogámicos C57BL , Pirazoles/farmacocinética , Pirimidinas/farmacocinética , Ratas , Ratas Wistar
13.
Clin Cancer Res ; 20(8): 2126-35, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24573549

RESUMEN

PURPOSE: Apoptosis, or programmed cell death, can be leveraged as a surrogate measure of response to therapeutic interventions in medicine. Cysteine aspartic acid-specific proteases, or caspases, are essential determinants of apoptosis signaling cascades and represent promising targets for molecular imaging. Here, we report development and in vivo validation of [(18)F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone ([(18)F]FB-VAD-FMK), a novel peptide-based molecular probe suitable for quantification of caspase activity in vivo using positron emission tomography (PET). EXPERIMENTAL DESIGN: Supported by molecular modeling studies and subsequent in vitro assays suggesting probe feasibility, the labeled pan-caspase inhibitory peptide, [(18)F]FB-VAD-FMK, was produced in high radiochemical yield and purity using a simple two-step, radiofluorination. The biodistribution of [(18)F]FB-VAD-FMK in normal tissue and its efficacy to predict response to molecularly targeted therapy in tumors was evaluated using microPET imaging of mouse models of human colorectal cancer. RESULTS: Accumulation of [(18)F]FB-VAD-FMK was found to agree with elevated caspase-3 activity in response to Aurora B kinase inhibition as well as a multidrug regimen that combined an inhibitor of mutant BRAF and a dual PI3K/mTOR inhibitor in (V600E)BRAF colon cancer. In the latter setting, [(18)F]FB-VAD-FMK PET was also elevated in the tumors of cohorts that exhibited reduction in size. CONCLUSIONS: These studies illuminate [(18)F]FB-VAD-FMK as a promising PET imaging probe to detect apoptosis in tumors and as a novel, potentially translatable biomarker for predicting response to personalized medicine.


Asunto(s)
Caspasa 3/metabolismo , Péptidos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/farmacocinética , Animales , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacocinética , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Femenino , Radioisótopos de Flúor/farmacocinética , Fluorobencenos/química , Humanos , Imidazoles/farmacología , Immunoblotting , Inmunohistoquímica , Indoles/farmacología , Ratones Endogámicos C57BL , Ratones Desnudos , Organofosfatos/farmacología , Péptidos/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Quinolinas/farmacología , Radiofármacos/farmacocinética , Sulfonamidas/farmacología , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Tetrahedron Lett ; 55(1)2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24396154

RESUMEN

A novel and highly efficient synthetic method leveraging microwave-assisted organic synthesis (MAOS) to yield di-7-azaindolylmethanes (DAIMs) is reported. Under MAOS conditions, reaction of 7-azaindole with aldehydes resulted predominantly in DAIMs, as opposed to the expected 7-azaindole addition products that form at ambient temperature. Based upon studies of different indoles and azaindoles with various aromatic and aliphatic aldehydes, we herein propose a mechanism where rapid and efficient microwave heating promotes nucleophilicity of 7-azaindoles towards the corresponding alkylidene-azaindolene intermediate to form the DAIM. This sequence provides a versatile approach to efficiently synthesize novel DAIMs that may be useful pharmaceuticals.

15.
J Med Chem ; 56(8): 3429-33, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23521048

RESUMEN

Focused library synthesis and structure-activity relationship development of 5,6,7-substituted pyrazolopyrimidines led to the discovery of 2-(5,7-diethyl-2-(4-(2-fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (6b), a novel translocator protein (TSPO) ligand exhibiting a 36-fold enhancement in affinity compared to another pyrazolopyrimidine-based TSPO ligand, 6a (DPA-714). Radiolabeling with fluorine-18 ((18)F) facilitated production of 2-(5,7-diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ((18)F-6b) in high radiochemical yield and specific activity. In vivo studies of (18)F-6b were performed which illuminated this agent as an improved probe for molecular imaging of TSPO-expressing cancers.


Asunto(s)
Pirazoles/síntesis química , Pirimidinas/síntesis química , Radiofármacos/síntesis química , Receptores de GABA/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Radioisótopos de Flúor , Humanos , Tomografía de Emisión de Positrones/métodos , Ratas , Relación Estructura-Actividad
16.
Tetrahedron Lett ; 53(32): 4161-4165, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23180892

RESUMEN

We report a dramatically improved total synthesis of two highly selective (V600E)BRAF inhibitors, PLX4720 and PLX4032, that leverages microwave-assisted organic synthesis (MAOS). Compared with previously reported approaches, our novel MAOS method significantly reduces overall reaction time without compromising yield. In addition to providing a gram-scale route to these compounds for preclinical oncology research, we anticipate this approach could accelerate the synthesis of azaindoles in high-throughput, library-based formats.

17.
J Nucl Med ; 53(2): 287-94, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22251555

RESUMEN

UNLABELLED: There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. METHODS: Glioma-bearing rats were imaged with (18)F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of (18)F-DPA-714 (130-200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of (3)H-PK 11195 with DPA-714 in vitro and displacement of (18)F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. RESULTS: (18)F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced (18)F-DPA-714 binding by greater than 60% on average. Tumor uptake of (18)F-DPA-714 was similar to another high-affinity TSPO imaging ligand, (18)F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. CONCLUSION: These studies illustrate the feasibility of using (18)F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, (18)F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of (18)F-DPA-714 PET to serve as a novel predictive cancer imaging modality.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Proteínas Portadoras/metabolismo , Radioisótopos de Flúor , Regulación Neoplásica de la Expresión Génica , Glioma/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirazoles , Pirimidinas , Receptores de GABA-A/metabolismo , Acetanilidas/metabolismo , Animales , Transporte Biológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estudios de Factibilidad , Glioma/genética , Glioma/metabolismo , Masculino , Pirazoles/metabolismo , Pirimidinas/metabolismo , Ratas
18.
J Nucl Med ; 52(1): 107-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21149488

RESUMEN

UNLABELLED: Translocator protein (TSPO), also referred to as peripheral benzodiazepine receptor (PBR), is a crucial 18-kDa outer mitochondrial membrane protein involved in numerous cellular functions, including the regulation of cholesterol metabolism, steroidogenesis, and apoptosis. Elevated expression of TSPO in oncology correlates with disease progression and poor survival, suggesting that molecular probes capable of assaying TSPO levels may have potential as cancer imaging biomarkers. In preclinical PET studies, we characterized a high-affinity aryloxyanilide-based TSPO imaging ligand, 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline (18F-PBR06), as a candidate probe for the quantitative assessment of TSPO expression in glioma. METHODS: Glioma-bearing rats were imaged with 18F-PBR06 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of 18F-PBR06 (70-100 MBq/0.2 mL). Over the course of scanning, arterial blood was collected to derive the input function, with high-performance liquid chromatography radiometabolite analysis performed on selected samples for arterial input function correction. Compartmental modeling of the PET data was performed using the corrected arterial input function. Specific tumor cell binding of PBR06 was evaluated by radioligand displacement of 3H-PK 11195 with PBR06 in vitro and by displacement of 18F-PBR06 with excess PBR06 in vivo. Immediately after imaging, tumor tissue and adjacent healthy brain were harvested for assay of TSPO protein levels by Western blotting and immunohistochemistry. RESULTS: 18F-PBR06 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain, facilitating excellent contrast between tumor and adjacent tissue. Infusion with PBR06 (10 mg/kg) displaced 18F-PBR06 binding by approximately 75%. The accumulation of 18F-PBR06 in tumor tissues and adjacent brain agreed with the ex vivo assay of TSPO protein levels by Western blotting and quantitative immunohistochemistry. CONCLUSION: These preclinical studies illustrate that 18F-PBR06 is a promising tracer for visualization of TSPO-expressing tumors. Importantly, the close correlation between 18F-PBR06 uptake and TSPO expression in tumors and normal tissues, coupled with the high degree of displaceable binding from both tumors and the normal brain, represents a significant improvement over other TSPO imaging ligands previously evaluated in glioma. These data suggest the potential of 18F-PBR06 to elucidate the role of TSPO in oncology, as well as its potential development as a cancer imaging biomarker.


Asunto(s)
Acetanilidas , Proteínas Portadoras/análisis , Radioisótopos de Flúor , Glioma/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Receptores de GABA-A/análisis , Acetanilidas/metabolismo , Animales , Línea Celular Tumoral , Isoquinolinas/metabolismo , Masculino , Modelos Biológicos , Ratas , Ratas Wistar
19.
Tetrahedron Lett ; 51(35): 4595-4598, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20689673

RESUMEN

We herein report a dramatically improved total synthesis of the high-affinity translocator protein (TSPO) ligand DPA-714, featuring microwave-assisted organic synthesis (MAOS). Compared with previously described approaches, our novel MAOS method dramatically reduces overall reaction time without adversely effecting reaction yields. We envision that the described MAOS protocol may be suitably applied to high-throughput, diversity-oriented synthesis of novel compounds based on the pyrazolo-pyrimidinyl scaffold. Such an approach could accelerate the development of focused libraries of novel TSPO ligands with potential for future development as molecular imaging and therapeutic agents.

20.
Clin Cancer Res ; 15(14): 4712-21, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19584166

RESUMEN

PURPOSE: To evaluate noninvasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and nonresponding tumor-bearing cohorts. EXPERIMENTAL DESIGN: Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin V accumulation), glucose metabolism [2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET)], and proliferation [3'-[18F]fluoro-3'-deoxythymidine-PET ([18F]FLT-PET)] were evaluated throughout a biweekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical analysis of cleaved caspase-3, phosphorylated AKT, and Ki67. RESULTS: NIR700-Annexin V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed but not in nonresponding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT-PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and immunohistochemical analysis. CONCLUSIONS: Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2+ tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not seem to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Diagnóstico por Imagen/métodos , Receptor ErbB-2/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Didesoxinucleósidos , Femenino , Radioisótopos de Flúor , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Tomografía de Emisión de Positrones , Pronóstico , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Reproducibilidad de los Resultados , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...