Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 119(11): 2205-2218, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137306

RESUMEN

VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III , Endosomas , Proteínas de Unión al GTP rab5 , Endocitosis , Humanos , Membranas Intracelulares , Fosfatidilinositoles
2.
PLoS One ; 15(5): e0233012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469878

RESUMEN

Leukocyte migration is controlled by a membrane-based chemosensory pathway on the leading edge pseudopod that guides cell movement up attractant gradients during the innate immune and inflammatory responses. This study employed single cell and population imaging to investigate drug-induced perturbations of leading edge pseudopod morphology in cultured, polarized RAW macrophages. The drugs tested included representative therapeutics (acetylsalicylic acid, diclofenac, ibuprofen, acetaminophen) as well as control drugs (PDGF, Gö6976, wortmannin). Notably, slow addition of any of the four therapeutics to cultured macrophages, mimicking the slowly increasing plasma concentration reported for standard oral dosage in patients, yielded no detectable change in pseudopod morphology. This finding is consistent with the well established clinical safety of these drugs. However, rapid drug addition to cultured macrophages revealed four distinct classes of effects on the leading edge pseudopod: (i) non-perturbing drug exposures yielded no detectable change in pseudopod morphology (acetylsalicylic acid, diclofenac); (ii) adaptive exposures yielded temporary collapse of the extended pseudopod and its signature PI(3,4,5)P3 lipid signal followed by slow recovery of extended pseudopod morphology (ibuprofen, acetaminophen); (iii) disruptive exposures yielded long-term pseudopod collapse (Gö6976, wortmannin); and (iv) activating exposures yielded pseudopod expansion (PDGF). The novel observation of adaptive exposures leads us to hypothesize that rapid addition of an adaptive drug overwhelms an intrinsic or extrinsic adaptation system yielding temporary collapse followed by adaptive recovery, while slow addition enables gradual adaptation to counteract the drug perturbation in real time. Overall, the results illustrate an approach that may help identify therapeutic drugs that temporarily inhibit the leading edge pseudopod during extreme inflammation events, and toxic drugs that yield long term inhibition of the pseudopod with negative consequences for innate immunity. Future studies are needed to elucidate the mechanisms of drug-induced pseudopod collapse, as well as the mechanisms of adaptation and recovery following some inhibitory drug exposures.


Asunto(s)
Macrófagos/efectos de los fármacos , Seudópodos/efectos de los fármacos , Acetaminofén/farmacología , Adaptación Fisiológica , Animales , Aspirina/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Diclofenaco/farmacología , Humanos , Ibuprofeno/farmacología , Inmunidad Innata/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/fisiología , Ratones , Seudópodos/fisiología , Seudópodos/ultraestructura , Células RAW 264.7 , Imagen de Lapso de Tiempo
3.
Biophys J ; 113(11): 2396-2405, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29211993

RESUMEN

Cellular pathways controlling chemotaxis, growth, survival, and oncogenesis are activated by receptor tyrosine kinases and small G-proteins of the Ras superfamily that stimulate specific isoforms of phosphatidylinositol-3-kinase (PI3K). These PI3K lipid kinases phosphorylate the constitutive lipid phosphatidylinositol-4,5-bisphosphate (PIP2) to produce the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Progress has been made in understanding direct, moderate PI3K activation by receptors. In contrast, the mechanism by which receptors and Ras synergistically activate PI3K to much higher levels remains unclear, and two competing models have been proposed: membrane recruitment versus activation of the membrane-bound enzyme. To resolve this central mechanistic question, this study employs single-molecule imaging to investigate PI3K activation in a six-component pathway reconstituted on a supported lipid bilayer. The findings reveal that simultaneous activation by a receptor activation loop (from platelet-derived growth factor receptor, a receptor tyrosine kinase) and H-Ras generates strong, synergistic activation of PI3Kα, yielding a large increase in net kinase activity via the membrane recruitment mechanism. Synergy requires receptor phospho-Tyr and two anionic lipids (phosphatidylserine and PIP2) to make PI3Kα competent for bilayer docking, as well as for subsequent binding and phosphorylation of substrate PIP2 to generate product PIP3. Synergy also requires recruitment to membrane-bound H-Ras, which greatly speeds the formation of a stable, membrane-bound PI3Kα complex, modestly slows its off rate, and dramatically increases its equilibrium surface density. Surprisingly, H-Ras binding significantly inhibits the specific kinase activity of the membrane-bound PI3Kα molecule, but this minor enzyme inhibition is overwhelmed by the marked enhancement of membrane recruitment. The findings have direct impacts for the fields of chemotaxis, innate immunity, inflammation, carcinogenesis, and drug design.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Activación Enzimática , Membrana Dobles de Lípidos/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/química , Fosfopéptidos/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...