Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Cureus ; 16(1): e51811, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38322083

RESUMEN

Introduction  Many people with multiple sclerosis (pwMS) experience problems with mobility at some point in their disease course. The Multiple Sclerosis Impact Scale (MSIS) and Multiple Sclerosis Walking Scale (MSWS) are validated patient-reported outcome measures of physical impairment in pwMS. The range of scores on MSIS and MSWS in people without MS (pwoMS) are not well understood. Methods People over the age of 16 who did not have a diagnosis of multiple sclerosis (MS) were invited to complete an online survey consisting of a general health questionnaire, MSIS and the MSWS. Scores for MSIS and MSWS from pwoMS were compared to those from a cohort of 35 pwMS from a previous study. Scores for MSIS and MSWS were correlated with age, sex and comorbidities in pwoMS. Results One hundred eighty-nine ambulant pwoMS were recruited (52.5% female), aged over 16 years of age. Ninety-nine percent reported no difficulty with walking, 89.4% were non-smokers, and 14% had a physical co-morbidity. None used a walking aid. For pwoMS, the MSIS score was a mean of 39.14±13.75 (range 29-127), compared to a mean of 77.2±24.94 (range 40-126) for pwMS. For pwoMS, the mean MSWS score was 8.46±16.2 (0-87) compared to a mean of 56.9±28.9 (4-100) for pwMS. There was no significant effect of sex or smoking on MSIS or MSWS scores in pwoMS. Presence of a physical co-morbidity was associated with significantly higher MSIS and MSWS scores in pwoMS. There was a significant correlation of increasing age with increasing MSWS score in pwoMS but no correlation of age with MSIS score. Conclusion There is a wide range of MSWS and MSIS scores in pwoMS. The age and presence of comorbidities influence both MSWS and MSIS scores. Our findings have implications for the selection of control groups for clinical studies in pwMS.

3.
Sci Rep ; 14(1): 1754, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243008

RESUMEN

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.


Asunto(s)
Velocidad al Caminar , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Marcha , Caminata , Proyectos de Investigación
4.
Front Neurol ; 14: 1247532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909030

RESUMEN

Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.

5.
J Med Internet Res ; 25: e44206, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889531

RESUMEN

Although the value of patient and public involvement and engagement (PPIE) activities in the development of new interventions and tools is well known, little guidance exists on how to perform these activities in a meaningful way. This is particularly true within large research consortia that target multiple objectives, include multiple patient groups, and work across many countries. Without clear guidance, there is a risk that PPIE may not capture patient opinions and needs correctly, thereby reducing the usefulness and effectiveness of new tools. Mobilise-D is an example of a large research consortium that aims to develop new digital outcome measures for real-world walking in 4 patient cohorts. Mobility is an important indicator of physical health. As such, there is potential clinical value in being able to accurately measure a person's mobility in their daily life environment to help researchers and clinicians better track changes and patterns in a person's daily life and activities. To achieve this, there is a need to create new ways of measuring walking. Recent advancements in digital technology help researchers meet this need. However, before any new measure can be used, researchers, health care professionals, and regulators need to know that the digital method is accurate and both accepted by and produces meaningful outcomes for patients and clinicians. Therefore, this paper outlines how PPIE structures were developed in the Mobilise-D consortium, providing details about the steps taken to implement PPIE, the experiences PPIE contributors had within this process, the lessons learned from the experiences, and recommendations for others who may want to do similar work in the future. The work outlined in this paper provided the Mobilise-D consortium with a foundation from which future PPIE tasks can be created and managed with clearly defined collaboration between researchers and patient representatives across Europe. This paper provides guidance on the work required to set up PPIE structures within a large consortium to promote and support the creation of meaningful and efficient PPIE related to the development of digital mobility outcomes.


Asunto(s)
Tecnología Digital , Participación del Paciente , Humanos , Pacientes , Evaluación de Resultado en la Atención de Salud , Europa (Continente)
6.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753279

RESUMEN

Background: Gait characteristics are important risk factors for falls, hospitalisations and mortality in older adults, but the impact of COPD on gait performance remains unclear. We aimed to identify differences in gait characteristics between adults with COPD and healthy age-matched controls during 1) laboratory tests that included complex movements and obstacles, 2) simulated daily-life activities (supervised) and 3) free-living daily-life activities (unsupervised). Methods: This case-control study used a multi-sensor wearable system (INDIP) to obtain seven gait characteristics for each walking bout performed by adults with mild-to-severe COPD (n=17; forced expiratory volume in 1 s 57±19% predicted) and controls (n=20) during laboratory tests, and during simulated and free-living daily-life activities. Gait characteristics were compared between adults with COPD and healthy controls for all walking bouts combined, and for shorter (≤30 s) and longer (>30 s) walking bouts separately. Results: Slower walking speed (-11 cm·s-1, 95% CI: -20 to -3) and lower cadence (-6.6 steps·min-1, 95% CI: -12.3 to -0.9) were recorded in adults with COPD compared to healthy controls during longer (>30 s) free-living walking bouts, but not during shorter (≤30 s) walking bouts in either laboratory or free-living settings. Double support duration and gait variability measures were generally comparable between the two groups. Conclusion: Gait impairment of adults with mild-to-severe COPD mainly manifests during relatively long walking bouts (>30 s) in free-living conditions. Future research should determine the underlying mechanism(s) of this impairment to facilitate the development of interventions that can improve free-living gait performance in adults with COPD.

7.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514857

RESUMEN

Hereditary spastic paraplegia (HSP) is characterised by progressive lower-limb spasticity and weakness resulting in ambulation difficulties. During clinical practice, walking is observed and/or assessed by timed 10-metre walk tests; time, feasibility, and methodological reliability are barriers to detailed characterisation of patients' walking abilities when instrumenting this test. Wearable sensors have the potential to overcome such drawbacks once a validated approach is available for patients with HSP. Therefore, while limiting patients' and assessors' burdens, this study aims to validate the adoption of a single lower-back wearable inertial sensor approach for step detection in HSP patients; this is the first essential algorithmic step in quantifying most gait temporal metrics. After filtering the 3D acceleration signal based on its smoothness and enhancing the step-related peaks, initial contacts (ICs) were identified as positive zero-crossings of the processed signal. The proposed approach was validated on thirteen individuals with HSP while they performed three 10-metre tests and wore pressure insoles used as a gold standard. Overall, the single-sensor approach detected 794 ICs (87% correctly identified) with high accuracy (median absolute errors (mae): 0.05 s) and excellent reliability (ICC = 1.00). Although about 12% of the ICs were missed and the use of walking aids introduced extra ICs, a minor impact was observed on the step time quantifications (mae 0.03 s (5.1%), ICC = 0.89); the use of walking aids caused no significant differences in the average step time quantifications. Therefore, the proposed single-sensor approach provides a reliable methodology for step identification in HSP, augmenting the gait information that can be accurately and objectively extracted from patients with HSP during their clinical assessment.


Asunto(s)
Trastornos Neurológicos de la Marcha , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/diagnóstico , Reproducibilidad de los Resultados , Marcha , Caminata , Trastornos Neurológicos de la Marcha/diagnóstico
8.
J Neuroeng Rehabil ; 20(1): 78, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316858

RESUMEN

BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.


Asunto(s)
Tecnología Digital , Fracturas Femorales Proximales , Humanos , Anciano , Marcha , Caminata , Velocidad al Caminar , Modalidades de Fisioterapia
9.
Mov Disord ; 38(8): 1493-1502, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246815

RESUMEN

BACKGROUND: Rescue of mitochondrial function is a promising neuroprotective strategy for Parkinson's disease (PD). Ursodeoxycholic acid (UDCA) has shown considerable promise as a mitochondrial rescue agent across a range of preclinical in vitro and in vivo models of PD. OBJECTIVES: To investigate the safety and tolerability of high-dose UDCA in PD and determine midbrain target engagement. METHODS: The UP (UDCA in PD) study was a phase II, randomized, double-blind, placebo-controlled trial of UDCA (30 mg/kg daily, 2:1 randomization UDCA vs. placebo) in 30 participants with PD for 48 weeks. The primary outcome was safety and tolerability. Secondary outcomes included 31-phosphorus magnetic resonance spectroscopy (31 P-MRS) to explore target engagement of UDCA in PD midbrain and assessment of motor progression, applying both the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) and objective, motion sensor-based quantification of gait impairment. RESULTS: UDCA was safe and well tolerated, and only mild transient gastrointestinal adverse events were more frequent in the UDCA treatment group. Midbrain 31 P-MRS demonstrated an increase in both Gibbs free energy and inorganic phosphate levels in the UDCA treatment group compared to placebo, reflecting improved ATP hydrolysis. Sensor-based gait analysis indicated a possible improvement of cadence (steps per minute) and other gait parameters in the UDCA group compared to placebo. In contrast, subjective assessment applying the MDS-UPDRS-III failed to detect a difference between treatment groups. CONCLUSIONS: High-dose UDCA is safe and well tolerated in early PD. Larger trials are needed to further evaluate the disease-modifying effect of UDCA in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Ácido Ursodesoxicólico/uso terapéutico , Método Doble Ciego
10.
Front Bioeng Biotechnol ; 11: 1143248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214281

RESUMEN

Introduction: Accurately assessing people's gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72-4.87 steps/min, stride length 0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.

11.
Ann Indian Acad Neurol ; 26(Suppl 1): S10-S14, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37092017

RESUMEN

Background: Remote ischemic conditioning (RIC), exposure of body parts to brief periods of circulatory occlusion and reperfusion, has been shown to improve cardiovascular responses to exercise in healthy individuals but its effects in people with MS are unknown. Objective: This study aimed to assess the effect of RIC on heart rate responses to walking in people with MS. Design: Double blind randomized controlled trial. Setting: Multiple sclerosis clinic of tertiary care center teaching hospital in the United Kingdom. Methods: Three cycles of RIC were delivered by occluding the upper arm with a blood pressure cuff inflated to a pressure of 30 mmHg above the systolic blood pressure. In the sham group, the blood pressure cuff was inflated to 30 mmHg below diastolic blood pressure. Heart rate responses to the 6-minute walk test (6MWT), the tolerability of RIC using a numerical rating scale for discomfort (0-10), and adverse events were studied. Results: Seventy-five participants (RIC -38 and Sham-37) completed the study. RIC was well tolerated. Compared to sham, RIC significantly decreased the rise in heart rate (P = 0.04) and percentage of predicted maximum heart rate (P = 0.016) after the 6MWT. Conclusion: RIC was well tolerated and improved the heart rate response to walking in people with MS. Further studies on RIC in the management of MS are needed.

12.
Digit Health ; 9: 20552076221150745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756644

RESUMEN

Background: This study aimed to explore the acceptability of a wearable device for remotely measuring mobility in the Mobilise-D technical validation study (TVS), and to explore the acceptability of using digital tools to monitor health. Methods: Participants (N = 106) in the TVS wore a waist-worn device (McRoberts Dynaport MM + ) for one week. Following this, acceptability of the device was measured using two questionnaires: The Comfort Rating Scale (CRS) and a previously validated questionnaire. A subset of participants (n = 36) also completed semi-structured interviews to further determine device acceptability and to explore their opinions of the use of digital tools to monitor their health. Questionnaire results were analysed descriptively and interviews using a content analysis. Results: The device was considered both comfortable (median CRS (IQR; min-max) = 0.0 (0.0; 0-20) on a scale from 0-20 where lower scores signify better comfort) and acceptable (5.0 (0.5; 3.0-5.0) on a scale from 1-5 where higher scores signify better acceptability). Interviews showed it was easy to use, did not interfere with daily activities, and was comfortable. The following themes emerged from participants' as being important to digital technology: altered expectations for themselves, the use of technology, trust, and communication with healthcare professionals. Conclusions: Digital tools may bridge existing communication gaps between patients and clinicians and participants are open to this. This work indicates that waist-worn devices are supported, but further work with patient advisors should be undertaken to understand some of the key issues highlighted. This will form part of the ongoing work of the Mobilise-D consortium.

13.
J Neuroeng Rehabil ; 19(1): 141, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36522646

RESUMEN

BACKGROUND: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION: ISRCTN-12246987.


Asunto(s)
Marcha , Enfermedad de Parkinson , Adulto , Humanos , Caminata , Velocidad al Caminar , Proyectos de Investigación
14.
PLoS One ; 17(10): e0269615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201476

RESUMEN

BACKGROUND: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. METHODS/DESIGN: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson's Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. DISCUSSION: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. TRIAL REGISTRATION: ISRCTN12051706.


Asunto(s)
Fragilidad , Enfermedad de Parkinson , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Monitoreo Fisiológico , Estudios Observacionales como Asunto , Modalidades de Fisioterapia
15.
Front Bioeng Biotechnol ; 10: 868928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721859

RESUMEN

There is growing interest in the quantification of gait as part of complex motor tasks. This requires gait events (GEs) to be detected under conditions different from straight walking. This study aimed to propose and validate a new marker-based GE detection method, which is also suitable for curvilinear walking and step negotiation. The method was first tested against existing algorithms using data from healthy young adults (YA, n = 20) and then assessed in data from 10 individuals from the following five cohorts: older adults, chronic obstructive pulmonary disease, multiple sclerosis, Parkinson's disease, and proximal femur fracture. The propagation of the errors associated with GE detection on the calculation of stride length, duration, speed, and stance/swing durations was investigated. All participants performed a variety of motor tasks including curvilinear walking and step negotiation, while reference GEs were identified using a validated methodology exploiting pressure insole signals. Sensitivity, positive predictive values (PPV), F1-score, bias, precision, and accuracy were calculated. Absolute agreement [intraclass correlation coefficient ( I C C 2,1 )] between marker-based and pressure insole stride parameters was also tested. In the YA cohort, the proposed method outperformed the existing ones, with sensitivity, PPV, and F1 scores ≥ 99% for both GEs and conditions, with a virtually null bias (<10 ms). Overall, temporal inaccuracies minimally impacted stride duration, length, and speed (median absolute errors ≤1%). Similar algorithm performances were obtained for all the other five cohorts in GE detection and propagation to the stride parameters, where an excellent absolute agreement with the pressure insoles was also found ( I C C 2,1 = 0.817 -   0.999 ). In conclusion, the proposed method accurately detects GE from marker data under different walking conditions and for a variety of gait impairments.

16.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960317

RESUMEN

Optoelectronic stereophotogrammetric (SP) systems are widely used in human movement research for clinical diagnostics, interventional applications, and as a reference system for validating alternative technologies. Regardless of the application, SP systems exhibit different random and systematic errors depending on camera specifications, system setup and laboratory environment, which hinders comparing SP data between sessions and across different systems. While many methods have been proposed to quantify and report the errors of SP systems, they are rarely utilized due to their complexity and need for additional equipment. In response, an easy-to-use quality control (QC) check has been designed that can be completed immediately prior to a data collection. This QC check requires minimal training for the operator and no additional equipment. In addition, a custom graphical user interface ensures automatic processing of the errors in an easy-to-read format for immediate interpretation. On initial deployment in a multicentric study, the check (i) proved to be feasible to perform in a short timeframe with minimal burden to the operator, and (ii) quantified the level of random and systematic errors between sessions and systems, ensuring comparability of data in a variety of protocol setups, including repeated measures, longitudinal studies and multicentric studies.


Asunto(s)
Movimiento , Fotogrametría , Humanos , Control de Calidad
17.
BMJ Open ; 11(12): e050785, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857567

RESUMEN

INTRODUCTION: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users' perspective on the device. METHODS AND ANALYSIS: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs.After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson's disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users' perspective on the deployed technology and relevance of the mobility assessment. ETHICS AND DISSEMINATION: The study has been granted ethics approval by the centre's committees (London-Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available. TRIAL REGISTRATION NUMBER: ISRCTN (12246987).


Asunto(s)
Esclerosis Múltiple , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Anciano , Marcha , Humanos , Proyectos de Investigación
18.
NPJ Digit Med ; 4(1): 149, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650191

RESUMEN

Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.

19.
IEEE Trans Biomed Eng ; 68(11): 3196-3204, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33625975

RESUMEN

OBJECTIVE: Mobility assessment is critical in the clinical management of people with Multiple Sclerosis (pwMS). Instrumented gait analysis provides a plethora of metrics for quantifying concurrent factors contributing to gait deterioration. However, a gait model discriminating underlying features contributing to this deterioration is lacking in pwMS. This study aimed at developing and validating such a model. METHODS: The gait of 24 healthy controls and 114 pwMS with mild, moderate, or severe disability was measured with inertial sensors on the shanks and lower trunk while walking for 6 minutes along a hospital corridor. Twenty out of thirty-six initially explored metrics computed from the sensor data met the quality criteria for exploratory factor analysis. This analysis provided the sought model, which underwent a confirmatory factor analysis before being used to characterize gait impairment across the three disability groups. RESULTS: A gait model consisting of five domains (rhythm/variability, pace, asymmetry, and forward and lateral dynamic balance) was revealed by the factor analysis, which was able to highlight gait abnormalities across the disability groups: significant alterations in rhythm/variability-, asymmetry-, and pace-based features were present in the mild group, but these were more profound in the moderate and severe groups. Deterioration in dynamic balance-based features was only noted in pwMS with a moderate and severe disability. CONCLUSION: A conceptual model of gait for disease-specific mobility assessment in pwMS was successfully developed and tested. SIGNIFICANCE: The new model, built with metrics that represent gait impairment in pwMS, highlighted clinically relevant changes across different disability levels, including those with no clinically observable walking disability. This shows the clear potential as a monitoring biomarker in pwMS.


Asunto(s)
Trastornos Neurológicos de la Marcha , Esclerosis Múltiple , Marcha , Análisis de la Marcha , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Caminata
20.
BMJ Open ; 10(8): e038911, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32759251

RESUMEN

INTRODUCTION: There are no disease-modifying treatments for Parkinson's disease (PD). We undertook the first drug screen in PD patient tissue and idntified ursodeoxycholic acid (UDCA) as a promising mitochondrial rescue agent. The aims of this trial are to determine safety and tolerability of UDCA in PD at 30 mg/kg, confirm the target engagement of UDCA, apply a novel motion sensor-based approach to quantify disease progression objectively, and estimate the mean effect size and its variance on the change in motor severity. METHODS AND ANALYSIS: This is a phase II, two-centre, double-blind, randomised, placebo-controlled trial of UDCA at a dose of 30 mg/kg in 30 participants with early PD. Treatment duration is 48 weeks, followed by an 8-week washout phase. Randomisation is 2:1, drug to placebo. Assessments are performed at baseline, week 12, 24, 36, 48 and 56. The primary outcome is safety and tolerability. Secondary outcomes will compare the change between baseline and week 48 using the following three approaches: the Movement Disorders Society Unified Parkinson's Disease Rating Scale Part 3 in the practically defined 'OFF' medication state; confirmation of target engagement, applying 31Phosphorus MR Spectroscopy to assess the levels of ATP and relevant metabolites in the brain; and objective quantification of motor impairment, using a validated, motion sensor-based approach. The primary outcome will be reported using descriptive statistics and comparisons between treatment groups. For each secondary outcome, the change from baseline will be summarised within treatment groups using summary statistics and appropriate statistical tests assessing for significant differences. All outcomes will use an intention-to-treat analysis population. ETHICS AND DISSEMINATION: This trial has been approved by the East of England - Cambridgeshire and Hertfordshire Research Ethics committee. Results will be disseminated in peer-reviewed journals, presentations at scientific meetings and to patients in a lay-summary format. TRIAL REGISTRATION NUMBER: NCT03840005.


Asunto(s)
Enfermedad de Parkinson , Ácido Ursodesoxicólico , Progresión de la Enfermedad , Método Doble Ciego , Inglaterra , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Ácido Ursodesoxicólico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...