Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176067

RESUMEN

Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.


Asunto(s)
Infarto del Miocardio , Fosfolípidos , Animales , Humanos , Fosfolípidos/metabolismo , Miocardio/metabolismo , Inflamación/metabolismo , Cicatrización de Heridas , Remodelación Ventricular
2.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176085

RESUMEN

Extracellular collagen remodeling is one of the central mechanisms responsible for the structural and compositional coherence of myocardium in patients undergoing myocardial infarction (MI). Activated primary cardiac fibroblasts following myocardial infarction are extensively investigated to establish anti-fibrotic therapies to improve left ventricular remodeling. To systematically assess vitamin C functions as a potential modulator involved in collagen fibrillogenesis in an in vitro model mimicking heart tissue healing after MI. Mouse primary cardiac fibroblasts were isolated from wild-type C57BL/6 mice and cultured under normal and profibrotic (hypoxic + transforming growth factor beta 1) conditions on freshly prepared coatings mimicking extracellular matrix (ECM) remodeling during healing after an MI. At 10 µg/mL, vitamin C reprogramed the respiratory mitochondrial metabolism, which is effectively associated with a more increased accumulation of intracellular reactive oxygen species (iROS) than the number of those generated by mitochondrial reactive oxygen species (mROS). The mRNA/protein expression of subtypes I, III collagen, and fibroblasts differentiations markers were upregulated over time, particularly in the presence of vitamin C. The collagen substrate potentiated the modulator role of vitamin C in reinforcing the structure of types I and III collagen synthesis by reducing collagen V expression in a timely manner, which is important in the initiation of fibrillogenesis. Altogether, our study evidenced the synergistic function of vitamin C at an optimum dose on maintaining the equilibrium functionality of radical scavenger and gene transcription, which are important in the initial phases after healing after an MI, while modulating the synthesis of de novo collagen fibrils, which is important in the final stage of tissue healing.


Asunto(s)
Ácido Ascórbico , Infarto del Miocardio , Ratones , Animales , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Vitaminas/metabolismo , Remodelación Ventricular/fisiología
3.
Front Microbiol ; 14: 1094794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180247

RESUMEN

Over the past 2 years, the world has faced the impactful Coronavirus Disease-2019 (COVID-19) pandemic, with a visible shift in economy, medicine, and beyond. As of recent times, the emergence of the monkeypox (mpox) virus infections and the growing number of infected cases have raised panic and fear among people, not only due to its resemblance to the now eradicated smallpox virus, but also because another potential pandemic could have catastrophic consequences, globally. However, studies of the smallpox virus performed in the past and wisdom gained from the COVID-19 pandemic are the two most helpful tools for humanity that can prevent major outbreaks of the mpox virus, thus warding off another pandemic. Because smallpox and mpox are part of the same virus genus, the Orthopoxvirus genus, the structure and pathogenesis, as well as the transmission of both these two viruses are highly similar. Because of these similarities, antivirals and vaccines approved and licensed in the past for the smallpox virus are effective and could successfully treat and prevent an mpox virus infection. This review discusses the main components that outline this current global health issue raised by the mpox virus, by presenting it as a whole, and integrating aspects such as its structure, pathogenesis, clinical aspects, prevention, and treatment options, and how this ongoing phenomenon is being globally approached.

4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498897

RESUMEN

Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4-5). Reducing the neutrophil infiltration in CCR1-/- resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2-/- scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4-5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process.


Asunto(s)
Infarto del Miocardio , Humanos , Infarto del Miocardio/metabolismo , Cicatriz/patología , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , ARN Mensajero/metabolismo , Miocardio/metabolismo
5.
Front Cell Dev Biol ; 10: 1078180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578781

RESUMEN

C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.

6.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361630

RESUMEN

Cancer is a leading cause of death worldwide, with increasing numbers of new cases each year. For the vast majority of cancer patients, surgery is the most effective procedure for the complete removal of the malignant tissue. However, relapse due to the incomplete resection of the tumor occurs very often, as the surgeon must rely primarily on visual and tactile feedback. Intraoperative near-infrared imaging with pafolacianine is a newly developed technology designed for cancer detection during surgery, which has been proven to show excellent results in terms of safety and efficacy. Therefore, pafolacianine was approved by the U.S. Food and Drug Administration (FDA) on 29 November 2021, as an additional approach that can be used to identify malignant lesions and to ensure the total resection of the tumors in ovarian cancer patients. Currently, various studies have demonstrated the positive effects of pafolacianine's use in a wide variety of other malignancies, with promising results expected in further research. This review focuses on the applications of the FDA-approved pafolacianine for the accurate intraoperative detection of malignant tissues. The cancer-targeting fluorescent ligands can shift the paradigm of surgical oncology by enabling the visualization of cancer lesions that are difficult to detect by inspection or palpation. The enhanced detection and removal of hard-to-detect cancer tissues during surgery will lead to remarkable outcomes for cancer patients and society, specifically by decreasing the cancer relapse rate, increasing the life expectancy and quality of life, and decreasing future rates of hospitalization, interventions, and costs.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Ováricas , Femenino , Humanos , Calidad de Vida , Recurrencia Local de Neoplasia/inducido químicamente , Neoplasias Ováricas/patología
7.
Discoveries (Craiova) ; 10(2): e150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438441

RESUMEN

Human immunodeficiency virus (HIV) poses a major health problem around the globe, resulting in hundred-thousands of deaths from AIDS and over a million new infections annually. Although the standard treatment of HIV infection, antiretroviral therapy, has proven effective in preventing HIV transmission, it is unsuitable for worldwide use due to its substantial costs and frequent adverse effects. Besides promoting HIV/AIDS awareness through education, there is hardly an alternative for inhibiting the spread of the disease. One promising approach is the development of an HIV vaccine. Unfortunately, the high variability of envelope proteins from HIV subtypes, their frequency of mutation and the lack of fully understanding the mechanisms of protection against the virus constitute an obstacle for vaccine development. Efforts for developing successful anti-HIV vaccines have been underway for decades now, with little success. Lately, significant progress has been made in adopting the novel mRNA vaccine approach as an anti-HIV strategy. mRNA vaccines received a great thrust during the COVID-19 pandemic. Now, several mRNA-based HIV vaccines are undergoing clinical trials to evaluate their safety and efficacy. This review offers an overview of the pathogenesis and treatment of HIV / AIDS, previous efforts of HIV vaccine development and introduces mRNA vaccines as a promising and potential game changing platform for HIV vaccination.

8.
Front Endocrinol (Lausanne) ; 13: 1010279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204105

RESUMEN

Immune checkpoint inhibitors, namely anti-CTLA-4, anti-PD-1 and anti-PD-L1 monoclonal antibodies, have emerged in the last decade as a novel form of cancer treatment, promoting increased survival in patients. As they tamper with the immune response in order to destroy malignant cells, a new type of adverse reactions has emerged, known as immune-related adverse events (irAEs), which frequently target the endocrine system, especially the thyroid and hypophysis. Thyroid irAEs include hyperthyroidism, thyrotoxicosis, hypothyroidism and a possibly life-threatening condition known as the "thyroid storm". Early prediction of occurrence and detection of the thyroid irAEs should be a priority for the clinician, in order to avoid critical situations. Moreover, they are recently considered both a prognostic marker and a means of overseeing treatment response, since they indicate an efficient activation of the immune system. Therefore, a multidisciplinary approach including both oncologists and endocrinologists is recommended when immune checkpoint inhibitors are used in the clinic.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Glándula Tiroides
9.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293490

RESUMEN

Sudden cardiac death due to arrhythmias, such as atrial fibrillation or ventricular tachycardia, account for 15-20% of all deaths. Myocardial infarction increases the burden of atrial fibrillation and ventricular tachycardia by structural and electrical remodeling of the heart. The current management of new-onset atrial fibrillation includes electric cardioversion with very high conversion rates and pharmacologic cardioversion, with less a than 50% conversion rate. If atrial fibrillation cannot be converted, the focus becomes the control of the symptoms ensuring a constant rhythm and rate control, without considering other contributory factors such as autonomic imbalance. Recently, a huge success was obtained by developing ablation techniques or addressing the vagal nerve stimulation. On the other hand, ventricular tachycardia is more sensitive to drug therapies. However, in cases of non-responsiveness to drugs, the usual therapeutic choice is represented by stereotactic ablative therapy or catheter ablation. This review focuses on these newly developed strategies for treatment of arrhythmias in clinical practice, specifically on vernakalant and low-level tragus stimulation for atrial fibrillation and stereotactic ablative therapy for drug-refractory ventricular tachycardia. These therapies are important for the significant improvement of the management of atrial fibrillation and ventricular tachycardia, providing: (1) a safer profile than current therapies, (2) higher success rate than current solutions, (3) low cost of delivery.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Taquicardia Ventricular , Humanos , Fibrilación Atrial/tratamiento farmacológico , Taquicardia Ventricular/tratamiento farmacológico , Cardioversión Eléctrica , Muerte Súbita Cardíaca , Antiarrítmicos/uso terapéutico
10.
Nat Protoc ; 15(5): 1649-1672, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32238952

RESUMEN

In pathology, microscopy is an important tool for the analysis of human tissues, both for the scientific study of disease states and for diagnosis. However, the microscopes commonly used in pathology are limited in resolution by diffraction. Recently, we discovered that it was possible, through a chemical process, to isotropically expand preserved cells and tissues by 4-5× in linear dimension. We call this process expansion microscopy (ExM). ExM enables nanoscale resolution imaging on conventional microscopes. Here we describe protocols for the simple and effective physical expansion of a variety of human tissues and clinical specimens, including paraffin-embedded, fresh frozen and chemically stained human tissues. These protocols require only inexpensive, commercially available reagents and hardware commonly found in a routine pathology laboratory. Our protocols are written for researchers and pathologists experienced in conventional fluorescence microscopy. The conventional protocol, expansion pathology, can be completed in ~1 d with immunostained tissue sections and 2 d with unstained specimens. We also include a new, fast variant, rapid expansion pathology, that can be performed on <5-µm-thick tissue sections, taking <4 h with immunostained tissue sections and <8 h with unstained specimens.


Asunto(s)
Resinas Acrílicas , Hidrogeles/síntesis química , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Patología/métodos , Humanos
11.
J Vis Exp ; (151)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31609342

RESUMEN

In modern pathology, optical microscopy plays an important role in disease diagnosis by revealing microscopic structures of clinical specimens. However, the fundamental physical diffraction limit prevents interrogation of nanoscale anatomy and subtle pathological changes when using conventional optical imaging approaches. Here, we describe a simple and inexpensive protocol, called expansion pathology (ExPath), for nanoscale optical imaging of common types of clinical primary tissue specimens, including both fixed-frozen or formalin-fixed paraffin embedded (FFPE) tissue sections. This method circumvents the optical diffraction limit by chemically transforming the tissue samples into tissue-hydrogel hybrid and physically expanding them isotropically across multiple scales in pure water. Due to expansion, previously unresolvable molecules are separated and thus can be observed using a conventional optical microscope.


Asunto(s)
Imagenología Tridimensional , Nanopartículas/química , Fijación del Tejido , Mama/citología , Femenino , Formaldehído/química , Humanos , Riñón/citología , Adhesión en Parafina
12.
Front Med (Lausanne) ; 5: 322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519560

RESUMEN

Kidney glomerular diseases, such as the minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), and other nephrotic syndromes, are typically diagnosed or confirmed via electron microscopy. Although optical microscopy has been a vital tool to examine clinical specimens for diagnoses in pathology for decades, the optical resolution is constricted by the physical diffraction limit of the optical microscope, which prevents high-resolution investigation of subcellular anatomy, such as of the podocyte tertiary foot processes. Here, we describe a simple, fast, and inexpensive protocol for nanoscale optical imaging of kidney glomeruli. The protocol is based on Expansion Pathology (ExPath), a new principle of microscopy that overcomes optical diffraction limit by chemically embedding specimens into a swellable polymer and physically expanding it homogenously prior to imaging. Our method uses only commercially available reagents, a conventional fluorescence microscope and it can be applied to both fixed-frozen or formalin-fixed paraffin embedded (FFPE) tissue sections. It requires minimal operative experience in a wet lab, optical microscopy and imaging processing. Finally, we also discuss challenges, limitations and prospective applications for ExPath-based imaging of glomeruli.

13.
Antioxid Redox Signal ; 28(1): 62-77, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398822

RESUMEN

Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.


Asunto(s)
Proteína Forkhead Box O3/genética , Regulación de la Expresión Génica , MicroARNs/genética , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Interferencia de ARN , Sitios de Unión , Línea Celular , Movimiento Celular , Disulfuros , Humanos , Modelos Biológicos , Estrés Oxidativo , Peroxirredoxinas/genética , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas
14.
Nat Biotechnol ; 35(8): 757-764, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714966

RESUMEN

Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Imagen Molecular/métodos , Nanomedicina/métodos , Biopsia , Mama/diagnóstico por imagen , Mama/patología , Mama/ultraestructura , Femenino , Técnicas Histológicas , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Riñón/ultraestructura , Nefrosis Lipoidea/diagnóstico por imagen , Nefrosis Lipoidea/patología
15.
Oncotarget ; 7(17): 23263-81, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-26993610

RESUMEN

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. EXPERIMENTAL DESIGN: Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. RESULTS: A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. CONCLUSIONS: This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas/genética , Serina Endopeptidasas/genética , Transcriptoma , Adenocarcinoma/clasificación , Adenocarcinoma/patología , Carcinoma in Situ/clasificación , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/patología , Estudios de Casos y Controles , Progresión de la Enfermedad , Detección Precoz del Cáncer , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/patología , Pronóstico , Neoplasias Pancreáticas
16.
Discoveries (Craiova) ; 4(1): e57, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32309578

RESUMEN

This brief review summarizes our current knowledge on the microRNAs that regulate apoptosis machinery and are potentially involved in the dysregulation or deregulation of apoptosis, a well known hallmark of cancer. microRNAs are critical regulators of the most important cellular processes, including apoptosis. Expression of microRNAs is found to be dysregulated in many malignancies, leading to apoptosis inhibition in cancer, or resistance to current therapies. To date, there are over 80 microRNAs directly involved in apoptosis regulation or dysregulation that can impact cancer detection, initiation, progression, invasion, metastasis or resistance to anti-cancer therapy. Development of microRNA-based therapeutic strategies is now taking shape in the clinic. Thus, these microRNAs represent potential targets or tools for cancer therapy in the future.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26504901

RESUMEN

The growing interest in scientometry stems from ethical concerns related to the proper evaluation of scientific contributions of an author working in a hard science. In the absence of a consensus, institutions may use arbitrary methods for evaluating scientists for employment and promotion. There are several indices in use that attempt to establish the most appropriate and suggestive position of any scientist in the field he/she works in. A scientist's Hirsch-index (h-index) quantifies their total effective published output, but h-index summarizes the total value of their published work without regard to their contribution to each publication. Consequently, articles where the author was a primary contributor carry the same weight as articles where the author played a minor role. Thus, we propose an updated h-index named Hirsch(p,t)-index that informs about both total scientific output and output where the author played a primary role. Our measure, h(p,t) = h(p),h(t), is composed of the h-index h(t) and the h-index calculated for articles where the author was a key contributor; i.e. first/shared first or senior or corresponding author. Thus, a h(p,t) = 5,10 would mean that the author has 5 articles as first, shared first, senior or corresponding author with at least 5 citations each, and 10 total articles with at least 10 citations each. This index can be applied in biomedical disciplines and in all areas where the first and last position on an article are the most important. Although other indexes, such as r- and w-indexes, were proposed for measuring the authors output based on the position of researchers within the published articles, our simpler strategy uses the already established algorithms for h-index calculation and may be more practical to implement.

18.
Genome Biol ; 16: 128, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26087699

RESUMEN

BACKGROUND: Epithelial-stromal crosstalk plays a critical role in invasive breast cancer pathogenesis; however, little is known on a systems level about how epithelial-stromal interactions evolve during carcinogenesis. RESULTS: We develop a framework for building genome-wide epithelial-stromal co-expression networks composed of pairwise co-expression relationships between mRNA levels of genes expressed in the epithelium and stroma across a population of patients. We apply this method to laser capture micro-dissection expression profiling datasets in the setting of breast carcinogenesis. Our analysis shows that epithelial-stromal co-expression networks undergo extensive rewiring during carcinogenesis, with the emergence of distinct network hubs in normal breast, and estrogen receptor-positive and estrogen receptor-negative invasive breast cancer, and the emergence of distinct patterns of functional network enrichment. In contrast to normal breast, the strongest epithelial-stromal co-expression relationships in invasive breast cancer mostly represent self-loops, in which the same gene is co-expressed in epithelial and stromal regions. We validate this observation using an independent laser capture micro-dissection dataset and confirm that self-loop interactions are significantly increased in cancer by performing computational image analysis of epithelial and stromal protein expression using images from the Human Protein Atlas. CONCLUSIONS: Epithelial-stromal co-expression network analysis represents a new approach for systems-level analyses of spatially localized transcriptomic data. The analysis provides new biological insights into the rewiring of epithelial-stromal co-expression networks and the emergence of epithelial-stromal co-expression self-loops in breast cancer. The approach may facilitate the development of new diagnostics and therapeutics targeting epithelial-stromal interactions in cancer.


Asunto(s)
Neoplasias de la Mama/genética , Mama/metabolismo , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias de la Mama/metabolismo , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Inmunohistoquímica , Receptores de Estrógenos , Células del Estroma/metabolismo , Análisis de Matrices Tisulares
19.
Sci Rep ; 5: 9893, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25962125

RESUMEN

Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer's interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 8/química , Caspasa 8/metabolismo , Activadores de Enzimas , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis/genética , Caspasa 8/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Células HeLa , Humanos , Células Jurkat , Células K562 , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética
20.
Discoveries (Craiova) ; 3(2): e46, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32309569

RESUMEN

Many technological advances have been made in the recent years, several of them with a great potential of significantly improving the diagnostic pathology field. This article discusses three of the most promising technologies, which emerged in the last one year. Fluorescent in situ sequencing can lead to the simultaneous identification of the transcriptome-wide RNA in individual cells across a tissue sections. 3D microscopy together with advanced image analysis can be used in diagnostic pathology and will especially be useful in hard to diagnose cases where the spatial relationship of the tissue components is important. Expansion microscopy physically expands the biological specimen, and is of great interest for diagnostic pathology since the cheap conventional microscopes can be used to image a symmetrically expanded tissue. In addition, digital analysis and computational pathology are an integral part of each of these three emerging technologies, which underline their importance for the future developments in diagnostic pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...