Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559260

RESUMEN

Accurate identification of germline de novo variants (DNVs) remains a challenging problem despite rapid advances in sequencing technologies as well as methods for the analysis of the data they generate, with putative solutions often involving ad hoc filters and visual inspection of identified variants. Here, we present a purely informatic method for the identification of DNVs by analyzing short-read genome sequencing data from proband-parent trios. Our method evaluates variant calls generated by three genome sequence analysis pipelines utilizing different algorithms-GATK HaplotypeCaller, DeepTrio and Velsera GRAF-exploring the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. We assessed the efficacy of our method by testing DNVs identified using a previously established, highly accurate classification procedure that partially relied on manual inspection and used Sanger sequencing to validate a DNV subset comprising less confident calls. The results show that our method is highly precise and that applying a force-calling procedure to putative variants further removes false-positive calls, increasing precision of the workflow to 99.6%. Our method also identified novel DNVs, 87% of which were validated, indicating it offers a higher recall rate without compromising accuracy. We have implemented this method as an automated bioinformatics workflow suitable for large-scale analyses without need for manual intervention.

2.
Nat Commun ; 13(1): 4384, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927245

RESUMEN

Graph-based genome reference representations have seen significant development, motivated by the inadequacy of the current human genome reference to represent the diverse genetic information from different human populations and its inability to maintain the same level of accuracy for non-European ancestries. While there have been many efforts to develop computationally efficient graph-based toolkits for NGS read alignment and variant calling, methods to curate genomic variants and subsequently construct genome graphs remain an understudied problem that inevitably determines the effectiveness of the overall bioinformatics pipeline. In this study, we discuss obstacles encountered during graph construction and propose methods for sample selection based on population diversity, graph augmentation with structural variants and resolution of graph reference ambiguity caused by information overload. Moreover, we present the case for iteratively augmenting tailored genome graphs for targeted populations and demonstrate this approach on the whole-genome samples of African ancestry. Our results show that population-specific graphs, as more representative alternatives to linear or generic graph references, can achieve significantly lower read mapping errors and enhanced variant calling sensitivity, in addition to providing the improvements of joint variant calling without the need of computationally intensive post-processing steps.


Asunto(s)
Análisis de Datos , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Humano/genética , Genómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Programas Informáticos
3.
Cell Genom ; 2(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35720974

RESUMEN

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

4.
Exp Eye Res ; 168: 57-68, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29337142

RESUMEN

Advances in sequencing have facilitated nucleotide-resolution genome-wide transcriptomic profiles across multiple mouse eye tissues. However, these RNA sequencing (RNA-seq) based eye developmental transcriptomes are not organized for easy public access, making any further analysis challenging. Here, we present a new database "Express" (http://www.iupui.edu/∼sysbio/express/) that unifies various mouse lens and retina RNA-seq data and provides user-friendly visualization of the transcriptome to facilitate gene discovery in the eye. We obtained RNA-seq data encompassing 7 developmental stages of lens in addition to that on isolated lens epithelial and fibers, as well as on 11 developmental stages of retina/isolated retinal rod photoreceptor cells from publicly available wild-type mouse datasets. These datasets were pre-processed, aligned, quantified and normalized for expression levels of known and novel transcripts using a unified expression quantification framework. Express provides heatmap and browser view allowing easy navigation of the genomic organization of transcripts or gene loci. Further, it allows users to search candidate genes and export both the visualizations and the embedded data to facilitate downstream analysis. We identified total of >81,000 transcripts in the lens and >178,000 transcripts in the retina across all the included developmental stages. This analysis revealed that a significant number of the retina-expressed transcripts are novel. Expression of several transcripts in the lens and retina across multiple developmental stages was independently validated by RT-qPCR for established genes such as Pax6 and Lhx2 as well as for new candidates such as Elavl4, Rbm5, Pabpc1, Tia1 and Tubb2b. Thus, Express serves as an effective portal for analyzing pruned RNA-seq expression datasets presently collected for the lens and retina. It will allow a wild-type context for the detailed analysis of targeted gene-knockout mouse ocular defect models and facilitate the prioritization of candidate genes from Exome-seq data of eye disease patients.


Asunto(s)
Bases de Datos Factuales , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Cristalino/metabolismo , ARN Mensajero/metabolismo , Retina/metabolismo , Transcriptoma , Animales , Ratones , Análisis de Secuencia de ARN
5.
Sci Rep ; 7(1): 11572, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912564

RESUMEN

Lens development involves a complex and highly orchestrated regulatory program. Here, we investigate the transcriptomic alterations and splicing events during mouse lens formation using RNA-seq data from multiple developmental stages, and construct a molecular portrait of known and novel transcripts. We show that the extent of novelty of expressed transcripts decreases significantly in post-natal lens compared to embryonic stages. Characterization of novel transcripts into partially novel transcripts (PNTs) and completely novel transcripts (CNTs) (novelty score ≥ 70%) revealed that the PNTs are both highly conserved across vertebrates and highly expressed across multiple stages. Functional analysis of PNTs revealed their widespread role in lens developmental processes while hundreds of CNTs were found to be widely expressed and predicted to encode for proteins. We verified the expression of four CNTs across stages. Examination of splice isoforms revealed skipped exon and retained intron to be the most abundant alternative splicing events during lens development. We validated by RT-PCR and Sanger sequencing, the predicted splice isoforms of several genes Banf1, Cdk4, Cryaa, Eif4g2, Pax6, and Rbm5. Finally, we present a splicing browser Eye Splicer ( http://www.iupui.edu/~sysbio/eye-splicer/ ), to facilitate exploration of developmentally altered splicing events and to improve understanding of post-transcriptional regulatory networks during mouse lens development.


Asunto(s)
Empalme Alternativo , Perfilación de la Expresión Génica , Cristalino/metabolismo , Transcriptoma , Animales , Biología Computacional/métodos , Exones , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Cristalino/embriología , Ratones , Anotación de Secuencia Molecular , Filogenia , Isoformas de ARN
6.
RNA ; 23(6): 836-846, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28336542

RESUMEN

RNA-binding proteins (RBPs) control the regulation of gene expression in eukaryotic genomes at post-transcriptional level by binding to their cognate RNAs. Although several variants of CLIP (crosslinking and immunoprecipitation) protocols are currently available to study the global protein-RNA interaction landscape at single-nucleotide resolution in a cell, currently there are very few tools that can facilitate understanding and dissecting the functional associations of RBPs from the resulting binding maps. Here, we present Seten, a web-based and command line tool, which can identify and compare processes, phenotypes, and diseases associated with RBPs from condition-specific CLIP-seq profiles. Seten uses BED files resulting from most peak calling algorithms, which include scores reflecting the extent of binding of an RBP on the target transcript, to provide both traditional functional enrichment as well as gene set enrichment results for a number of gene set collections including BioCarta, KEGG, Reactome, Gene Ontology (GO), Human Phenotype Ontology (HPO), and MalaCards Disease Ontology for several organisms including fruit fly, human, mouse, rat, worm, and yeast. It also provides an option to dynamically compare the associated gene sets across data sets as bubble charts, to facilitate comparative analysis. Benchmarking of Seten using eCLIP data for IGF2BP1, SRSF7, and PTBP1 against their corresponding CRISPR RNA-seq in K562 cells as well as randomized negative controls, demonstrated that its gene set enrichment method outperforms functional enrichment, with scores significantly contributing to the discovery of true annotations. Comparative performance analysis using these CRISPR control data sets revealed significantly higher precision and comparable recall to that observed using ChIP-Enrich. Seten's web interface currently provides precomputed results for about 200 CLIP-seq data sets and both command line as well as web interfaces can be used to analyze CLIP-seq data sets. We highlight several examples to show the utility of Seten for rapid profiling of various CLIP-seq data sets. Seten is available on http://www.iupui.edu/∼sysbio/seten/.


Asunto(s)
Sitios de Unión , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Programas Informáticos , Línea Celular , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ontología de Genes , Estudios de Asociación Genética/métodos , Humanos , Anotación de Secuencia Molecular , Fenotipo , Flujo de Trabajo
7.
Cancer Inform ; 15(Suppl 2): 17-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27528797

RESUMEN

Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis.

8.
Front Microbiol ; 6: 730, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257716

RESUMEN

Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...