Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 46(12): 1765-1776, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938390

RESUMEN

The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.


Asunto(s)
Cromatografía , Insulina , Cromatografía/métodos , Cristalización , Insulina/química
2.
Bioprocess Biosyst Eng ; 35(8): 1333-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22453680

RESUMEN

Bio-catalytic in vitro multistep reactions can be combined in a single step in one pot by optimizing multistep reactions under identical reaction condition. Using this analogy, the process of making PEGylated insulin, IN-105, was simplified. Instead of taking the purified active insulin bulk powder as the starting material for the conjugation step, an insulin process intermediate, partially purified insulin ester, was taken as starting material. Process intensification (PI) was established by performing a novel de-blocking (de-esterification) of the partially purified insulin ester and conjugation at B-29 Lys residue of B chain with a short-chain methoxy polyethylene glycol (mPEG) in a single-pot reactor. The chromatographic profile at the end of the reaction was found similar irrespective of whether both the reactions were performed sequentially or simultaneously. The conjugated product of interest, IN-105 (conjugation at LysB(29)), was purified from the heterogeneous mixture of conjugated products. The new manufacturing process was deduced to be more simplified and economical in making the insulin conjugates as several downstream purification steps could be circumvented. The physicochemical characteristics of IN-105 manufactured through this economic process was found to be indifferent from the product formed through the traditional process where the conjugation starting material was purified from bulk insulin.


Asunto(s)
Insulina/análogos & derivados , Lisina/química , Polietilenglicoles/química , Catálisis , Humanos , Insulina/biosíntesis , Insulina/química , Insulina/aislamiento & purificación , Polietilenglicoles/aislamiento & purificación
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1063-5, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18997343

RESUMEN

CD39 is a prototype member of the ecto-nucleoside triphosphate diphosphohydrolase family that hydrolyzes extracellular nucleoside diphosphates and triphosphates in the presence of divalent cations. Here, the expression, purification and crystallization of the ecto-enzymatic domain of rat CD39, sCD39, are described. The 67 kDa secreted soluble glycoprotein was recombinantly overexpressed in a glycosylation mutant CHO line, Lec.3.2.8.1, and purified from conditioned media. Diffraction-quality crystals of sCD39 were produced by the vapor-diffusion method using PEG 3350 and ammonium dihydrogen phosphate as precipitants. The enzyme crystallized in a primitive trigonal form in space group P3(2), with unit-cell parameters a = b = 118.1, c = 81.6 A and with two sCD39 copies in the asymmetric unit. Several low- to medium-resolution diffraction data sets were collected using an in-house X-ray source. Analysis of the intensity statistics showed that the crystals were invariably merohedrally twinned with a high twin fraction. For initial phasing, a molecular-replacement search was performed against the complete 3.2 A data set using a maximum-likelihood molecular-replacement method as implemented in Phaser. The initial model of the two sCD39 monomers was placed into the P3(2) lattice and rigid-body refined and position-minimized with PHENIX.


Asunto(s)
Antígenos CD/química , Apirasa/química , Estructura Terciaria de Proteína , Animales , Antígenos CD/genética , Apirasa/genética , Cristalización , Datos de Secuencia Molecular , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
4.
J Biol Chem ; 282(4): 2196-202, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17127770

RESUMEN

Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified B. subtilis NOS (bsNOS). When an NADPH-utilizing bacterial flavodoxin reductase (FLDR) was added to reduce YkuP or YkuN, both supported NO synthesis from either L-arginine or N-hydroxyarginine and supported a linear nitrite accumulation over a 30-min reaction period. Rates of nitrite production were directly dependent on the ratio of YkuN or YkuP to bsNOS. However, the V/Km value for YkuN (5.2 x 10(5)) was about 20 times greater than that of YkuP (2.6 x 10(4)), indicating YkuN is more efficient in supporting bsNOS catalysis. YkuN that was either photo-reduced or prereduced by FLDR transferred an electron to the bsNOS ferric heme at rates similar to those measured for heme reduction in the animal NOSs. YkuN supported a similar NO synthesis activity by a different bacterial NOS (Deinococcus radiodurans) but not by any of the three mammalian NOS oxygenase domains nor by an insect NOS oxygenase domain. Our results establish YkuN as a kinetically competent redox partner for bsNOS and suggest that FLDR/flavodoxin proteins could function physiologically to support catalysis by bacterial NOSs.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Flavodoxina/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/biosíntesis , Animales , Catálisis , Cinética , Oxidación-Reducción , Especificidad de la Especie
5.
J Biol Chem ; 281(47): 36378-90, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17005555

RESUMEN

Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.


Asunto(s)
Sistema Nervioso Central/lesiones , Sistema Nervioso Central/patología , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Animales , Axones/metabolismo , Biofisica/métodos , Células CHO , Diferenciación Celular , Membrana Celular/metabolismo , Cricetinae , Cristalografía por Rayos X , Humanos , Leucina/química , Proteínas de la Membrana/metabolismo , Vaina de Mielina/química , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Estructura Terciaria de Proteína
6.
J Biol Chem ; 280(36): 31965-73, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15998643

RESUMEN

An auxiliary tryptophanyl tRNA synthetase (drTrpRS II) that interacts with nitric-oxide synthase in the radiation-resistant bacterium Deinococcus radiodurans charges tRNA with tryptophan and 4-nitrotryptophan, a specific nitration product of nitric-oxide synthase. Crystal structures of drTrpRS II, empty of ligands or bound to either Trp or ATP, reveal that drTrpRS II has an overall structure similar to standard bacterial TrpRSs but undergoes smaller amplitude motions of the helical tRNA anti-codon binding (TAB) domain on binding substrates. TAB domain loop conformations that more closely resemble those of human TrpRS than those of Bacillus stearothermophilus TrpRS (bsTrpRS) indicate different modes of tRNA recognition by subclasses of bacterial TrpRSs. A compact state of drTrpRS II binds ATP, from which only minimal TAB domain movement is necessary to bring nucleotide in contact with Trp. However, the signature KMSKS loop of class I synthetases does not completely engage the ATP phosphates, and the adenine ring is not well ordered in the absence of Trp. Thus, progression of the KMSKS loop to a high energy conformation that stages acyl-adenylation requires binding of both substrates. In an asymmetric drTrpRS II dimer, the closed subunit binds ATP, whereas the open subunit binds Trp. A crystallographically symmetric dimer binds no ligands. Half-site reactivity for Trp binding is confirmed by thermodynamic measurements and explained by an asymmetric shift of the dimer interface toward the occupied active site. Upon Trp binding, Asp68 propagates structural changes between subunits by switching its hydrogen bonding partner from dimer interface residue Tyr139 to active site residue Arg30. Since TrpRS IIs are resistant to inhibitors of standard TrpRSs, and pathogens contain drTrpRS II homologs, the structure of drTrpRS II provides a framework for the design of potentially useful antibiotics.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dominio Catalítico , Deinococcus/enzimología , Triptófano-ARNt Ligasa/química , Triptófano/metabolismo , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Calorimetría , Cristalografía por Rayos X , Geobacillus stearothermophilus/enzimología , Humanos , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/metabolismo , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Triptófano/química , Triptófano-ARNt Ligasa/metabolismo
7.
Nat Struct Mol Biol ; 12(3): 274-5, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723076

RESUMEN

The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNA(Trp) with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.


Asunto(s)
ARN de Transferencia de Triptófano/metabolismo , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/metabolismo , Triptófano/análogos & derivados , Triptófano/metabolismo , 5-Hidroxitriptófano/metabolismo , Catálisis , Cristalografía , Deinococcus/enzimología , Estructura Molecular , Óxido Nítrico/metabolismo , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 101(45): 15881-6, 2004 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-15520379

RESUMEN

In mammals, nitric oxide synthases (NOSs) produce nitric oxide for signaling and defense functions; in Streptomyces, NOS proteins nitrate a tryptophanyl moiety in synthesis of a phytotoxin. We have discovered that the NOS protein from the radiation-resistant bacterium Deinococcus radiodurans (deiNOS) associates with an unusual tryptophanyl tRNA synthetase (TrpRS). D. radiodurans contains genes for two TrpRSs: the first has approximately 40% sequence identity to typical TrpRSs, whereas the second, identified as the NOS-interacting protein (TrpRS II), has only approximately 29% identity. TrpRS II is induced after radiation damage and contains an N-terminal extension similar to those of proteins involved in stress responses. Recombinantly expressed TrpRS II binds tryptophan (Trp), ATP, and D. radiodurans tRNA(Trp) and catalyzes the formation of 5' adenyl-Trp and tRNA(Trp), with approximately five times less activity than TrpRS I. Upon coexpression in Escherichia coli, TrpRS II binds to, copurifies with, and dramatically enhances the solubility of deiNOS. Dimeric TrpRS II binds dimeric deiNOS with a stoichiometry of 1:1 and a dissociation constant of 6-30 muM. Upon forming a complex, deiNOS quenches the fluorescence of an ATP analog bound to TrpRS II, and increases its affinity for substrate l-arginine. Remarkably, TrpRS II also activates the NOS activity of deiNOS. These findings reveal a link between bacterial NOS and Trp metabolism in a second organism and may indicate yet another novel biological function for bacterial NOS.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Deinococcus/enzimología , Óxido Nítrico Sintasa/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Deinococcus/genética , Dimerización , Genes Bacterianos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/genética , ARN de Transferencia de Triptófano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Solubilidad , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/genética
9.
J Biol Chem ; 279(48): 49567-70, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15466862

RESUMEN

Bacterial nitric-oxide synthase proteins (NOSs) from certain Streptomyces strains have been shown to participate in biosynthetic nitration of tryptophanyl moieties in vivo (Kers, J. A., Wach, M. J., Krasnoff, S. B., Cameron, K. D., Widom, J., Bukhaid, R. A., Gibson, D. M., and Crane, B. R., and Loria, R. (2004) Nature 429, 79-82). We report that the complex between Deinococcus radiodurans NOS (deiNOS) and an unusual tryptophanyl-tRNA synthetase (TrpRS II) catalyzes the regioselective nitration of tryptophan (Trp) at the 4-position. Unlike non-enzymatic Trp nitration, and similar reactions catalyzed by globins and peroxidases, deiNOS only produces the otherwise unfavorable 4-nitro-Trp isomer. Although deiNOS alone will catalyze 4-nitro-Trp production, yields are significantly enhanced by TrpRS II and ATP. 4-Nitro-Trp formation exhibits saturation behavior with Trp (but not tyrosine) and is completely inhibited by the addition of the mammalian NOS cofactor (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)B). Trp stimulates deiNOS oxidation of substrate l-arginine (Arg) to the same degree as H(4)B. These observations are consistent with a mechanism where Trp or a derivative thereof binds in the NOS pterin site, participates in Arg oxidation, and becomes nitrated at the 4-position.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Triptófano/metabolismo , Deinococcus/enzimología , Deinococcus/metabolismo , Óxido Nítrico/biosíntesis , Pterinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...