Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Viruses ; 13(9)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34578405

RESUMEN

Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo.


Asunto(s)
Proteínas de la Cápside/fisiología , Membrana Mucosa/virología , Proteínas Oncogénicas Virales/fisiología , Papillomaviridae/fisiología , Piel/virología , Animales , Proteínas de la Cápside/genética , Transformación Celular Viral , ADN Viral/biosíntesis , Femenino , Genoma Viral , Ratones , Ratones Desnudos , Mutación , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Replicación Viral
2.
Emerg Microbes Infect ; 8(1): 1108-1121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31340720

RESUMEN

Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention. Here we show, in rabbit and mouse models, that blood infected with papillomavirus yields infections at permissive sites with detectable viral DNA, RNA transcripts, and protein products. The rabbit skin tumours induced via blood infection displayed decreased expression of SLN, TAC1, MYH8, PGAM2, and APOBEC2 and increased expression of SDRC7, KRT16, S100A9, IL36G, and FABP9, as seen in tumours induced by local infections. Furthermore, we demonstrate that blood from infected mice can transmit the infection to uninfected animals. Finally, we demonstrate the presence of papillomavirus infections and virus-induced hyperplasia in the stomach tissues of animals infected via the blood. These results indicate that blood transmission could be another route for papillomavirus infection, implying that the human blood supply, which is not screened for papillomaviruses, could be a potential source of HPV infection as well as subsequent cancers in tissues not normally associated with the viruses.


Asunto(s)
Sangre/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/transmisión , Infecciones por Papillomavirus/virología , Animales , ADN Viral/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/sangre , Infecciones por Papillomavirus/genética , Conejos
3.
Artículo en Inglés | MEDLINE | ID: mdl-29157956

RESUMEN

In recognition of the importance of zebrafish as a model organism for studying human disease, we have created zebrafish content for a web-based reference atlas of microanatomy for comparing histology and histopathology between model systems and with humans (http://bio-atlas.psu.edu). Fixation, decalcification, embedding, and sectioning of zebrafish were optimized to maximize section quality. A comparison of protocols involving six fixatives showed that 10% Neutral Buffered Formalin at 21°C for 24h yielded excellent results. Sectioning of juveniles and adults requires bone decalcification; EDTA at 0.35M produced effective decalcification in 21-day-old juveniles through adults (≥~3Months). To improve section plane consistency in sets of larvae, we have developed new array casting molds based on the outside contours of larvae derived from 3D microCT images. Tissue discontinuity in sections, a common barrier to creating quality sections of zebrafish, was minimized by processing and embedding the formalin-fixed zebrafish tissues in plasticized forms of paraffin wax, and by periodic hydration of the block surface in ice water between sets of sections. Optimal H&E (Hematoxylin and Eosin) staining was achieved through refinement of standard protocols. High quality slide scans produced from glass histology slides were digitally processed to maximize image quality, and experimental replicates posted as full slides as part of this publication. Modifications to tissue processing are still needed to eliminate the need for block surface hydration. The further addition of slide collections from other model systems and 3D tools for visualizing tissue architecture would greatly increase the utility of the digital atlas.


Asunto(s)
Técnica de Descalcificación , Adhesión en Parafina/métodos , Manejo de Especímenes/métodos , Fijación del Tejido/métodos , Pez Cebra/embriología , Animales , Quelantes del Calcio/química , Ácido Edético/química , Fijadores/química , Formaldehído/química , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador , Microscopía , Microtomía , Coloración y Etiquetado
4.
Sci Rep ; 7(1): 16932, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208932

RESUMEN

Mouse papillomavirus has shown broad tissue tropism in nude mice. Previous studies have tested cutaneous infections in different immunocompromised and immunocompetent mouse strains. In the current study, we examined mucosal infection in several immunocompetent and immunocompromised mouse strains. Viral DNA was monitored periodically by Q-PCR of lavage samples. Immunohistochemistry and in situ hybridization were used to determine viral capsid protein and viral DNA respectively. All athymic nude mouse strains showed active infections at both cutaneous and mucosal sites. Interestingly, NOD/SCID mice, which have a deficiency in T, B, and NK cells, showed minimal disease at cutaneous sites but developed persistent infection at the mucosal sites including those of the anogenital region and the oral cavity. Three strains of immunocompetent mice supported mucosal infections. Infections of the lower genital tract in heterozygous (immunocompetent) mice of the NU/J strain progressed to high grade dysplasia and to carcinoma in situ. Anti-MmuPV1 neutralizing antibodies were detected in the sera of all immunocompetent animals. Our findings demonstrate that the mucosae may be the preferred sites for this virus in mice. The mouse model is expected to be a valuable model for the study of mucosal papillomavirus disease, progression, and host immune control.


Asunto(s)
Enfermedades de la Boca/virología , Membrana Mucosa/virología , Infecciones por Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , ADN Viral/análisis , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Homocigoto , Interferón-alfa/genética , Ratones Pelados , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Mutantes , Enfermedades de la Boca/inmunología , Enfermedades de la Boca/patología , Membrana Mucosa/patología , Neoplasias Experimentales/virología , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/patología , Enfermedades Cutáneas Infecciosas/virología
5.
Viruses ; 9(9)2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867783

RESUMEN

The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.


Asunto(s)
Modelos Animales de Enfermedad , Ratones/virología , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/virología , Inmunidad Adaptativa , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Progresión de la Enfermedad , Humanos , Inmunidad Innata , Ratones/inmunología , Enfermedades de la Boca/virología , Membrana Mucosa/patología , Membrana Mucosa/virología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/patología , Análisis de Secuencia de ARN , Piel/virología , Neoplasias Cutáneas/virología , Linfocitos T/inmunología , Linfocitos T/virología , Tropismo Viral
6.
J Gen Virol ; 98(10): 2520-2529, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28942760

RESUMEN

We report secondary cutaneous infections in the mouse papillomavirus (MmuPV1)/mouse model. Our previous study demonstrated that cutaneous MmuPV1 infection could spread to mucosal sites. Recently, we observed that mucosal infections could also spread to various cutaneous sites including the back, tail, muzzle and mammary tissues. The secondary site lesions were positive for viral DNA, viral capsid protein and viral particles as determined by in situ hybridization, immunohistochemistry and transmission electron microscopy analyses, respectively. We also demonstrated differential viral production and tumour growth at different secondarily infected skin sites. For example, fewer viral particles were detected in the least susceptible back tissues when compared with those in the infected muzzle and tail, although similar amounts of viral DNA were detected. Follow-up studies demonstrated that significantly lower amounts of viral DNA were packaged in the back lesions. Lavages harvested from the oral cavity and lower genital tracts were equally infectious at both cutaneous and mucosal sites, supporting the broad tissue tropism of this papillomavirus. Importantly, two secondary skin lesions on the forearms of two mice displayed a malignant phenotype at about 9.5 months post-primary infection. Therefore, MmuPV1 induces not only dysplasia at mucosal sites such as the vagina, anus and oral cavity but also skin carcinoma at cutaneous sites. These findings demonstrate that MmuPV1 mucosal infection can be spread to cutaneous sites and suggest that the model could serve a useful role in the study of the viral life cycle and pathogenesis of papillomavirus.

7.
Virus Res ; 231: 108-118, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-27956145

RESUMEN

Preclinical model systems to study multiple features of the papillomavirus life cycle have greatly aided our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. The challenge to studying HPV in hosts is that HPV along with most PVs are both species and tissue restricted. Thus, fundamental properties of HPV viral proteins can be assessed in specialized cell culture systems but host responses that involve innate immunity and host restriction factors requires preclinical surrogate models. Fortunately, there are several well-characterized and new animal models of papillomavirus infections that are available to the PV research community. Old models that continue to have value include canine, bovine and rabbit PV models and new rodent models are in place to better assess host-virus interactions. Questions arise as to the strengths and weaknesses of animal PV models for HPV disease and how accurately these preclinical models predict malignant progression, vaccine efficacy and therapeutic control of HPV-associated disease. In this review, we examine current preclinical models and highlight the strengths and weaknesses of the various models as well as provide an update on new opportunities to study the numerous unknowns that persist in the HPV research field.


Asunto(s)
Papillomavirus Bovino 1/inmunología , Papillomavirus del Conejo de Rabo Blanco/inmunología , Modelos Animales de Enfermedad , Lambdapapillomavirus/inmunología , Papillomaviridae/inmunología , Animales , Papillomavirus Bovino 1/genética , Papillomavirus Bovino 1/crecimiento & desarrollo , Papillomavirus Bovino 1/patogenicidad , Bovinos , Papillomavirus del Conejo de Rabo Blanco/genética , Papillomavirus del Conejo de Rabo Blanco/crecimiento & desarrollo , Papillomavirus del Conejo de Rabo Blanco/patogenicidad , Perros , Femenino , Humanos , Lambdapapillomavirus/genética , Lambdapapillomavirus/crecimiento & desarrollo , Lambdapapillomavirus/patogenicidad , Ratones , Papillomaviridae/genética , Papillomaviridae/crecimiento & desarrollo , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/biosíntesis , Primates/virología , Conejos , Ratas , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/virología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/virología
8.
Virology ; 488: 73-80, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26609937

RESUMEN

In 2010, a new mouse papillomavirus, MmuPV1, was discovered in a colony of NMRI- Foxn1(nu)/Foxn1(nu) athymic mice in India. This finding was significant because it was the first papillomavirus to be found in a laboratory mouse. In this paper we report successful infections of both dorsal and ventral surfaces of the rostral tongues of outbred athymic nude mice. We also report the observation that the base of the tongue, the area of the tongue often targeted by cancer-associated high-risk papillomavirus infections in humans, is especially susceptible to infection. A suitable animal model for the study of oral papillomavirus infections, co-infections, and cancers has long been sought. The work presented here suggests that such a model is now at hand.


Asunto(s)
Mucosa Bucal/patología , Mucosa Bucal/virología , Papillomaviridae/fisiología , Lengua/patología , Lengua/virología , Animales , Histocitoquímica , Inmunohistoquímica , Ratones , Ratones Desnudos , Microscopía
9.
J Gen Virol ; 96(12): 3554-3565, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26399579

RESUMEN

Noninvasive and practical techniques to longitudinally track viral infection are sought after in clinical practice. We report a proof-of-principle study to monitor the viral DNA copy number using a newly established mouse papillomavirus (MmuPV1) mucosal infection model. We hypothesized that viral presence could be identified and quantified by collecting lavage samples from cervicovaginal, anal and oral sites. Nude mice infected at these sites with infectious MmuPV1 were tracked for up to 23 weeks starting at 6 weeks post-infection. Viral DNA copy number was determined by SYBR Green Q-PCR analysis. In addition, we tracked viral DNA load through three complete oestrous cycles to pinpoint whether there was a correlation between the DNA load and the four stages of the oestrous cycle. Our results showed that high viral DNA copy number was reproducibly detected from both anal and cervicovaginal lavage samples. The infection and disease progression were further confirmed by histology, cytology, in situ hybridization, immunohistochemistry and transmission electron microscopy. Interestingly, the viral copy number fluctuated over the oestrous cycle, with the highest level at the oestrus stage, implying that multiple sampling might be necessary to provide a reliable diagnosis. Virus DNA was detected in oral lavage samples at a later time after infection. Lower viral DNA load was found in oral samples when compared with those in anal and vaginal tracts. To our knowledge, our study is the first in vivo study to sequentially monitor papillomavirus infection from mucosal anal, oral and vaginal tracts in a preclinical model.


Asunto(s)
Canal Anal/virología , Cuello del Útero/virología , Modelos Animales de Enfermedad , Boca/virología , Infecciones por Papillomavirus/virología , Vagina/virología , Canal Anal/patología , Animales , Cuello del Útero/patología , Variaciones en el Número de Copia de ADN/genética , ADN Viral/genética , Femenino , Ratones , Ratones Desnudos , Boca/patología , Papillomaviridae/fisiología , Vagina/patología
10.
PLoS One ; 10(3): e0120128, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803616

RESUMEN

BACKGROUND: Papillomavirus disease and associated cancers remain a significant health burden in much of the world. The current protective vaccines, Gardasil and Cervarix, are expensive and not readily available to the underprivileged. In addition, the vaccines have not gained wide acceptance in the United States nor do they provide therapeutic value. Papillomaviruses are strictly species specific and thus human viruses cannot be studied in an animal host. An appropriate model for mucosal disease has long been sought. We chose to investigate whether the newly discovered mouse papillomavirus, MmuPV1, could infect mucosal tissues in Foxn1nu/Foxn1nu mice. METHODS: The vaginal and anal canals of Foxn1nu/Foxn1nu mice were gently abraded using Nonoxynol-9 and "Doctor's BrushPicks" and MmuPV1 was delivered into the vaginal tract or the anal canal. RESULTS: Productive vaginal, cervical and anal infections developed in all mice. Vaginal/cervical infections could be monitored by vaginal lavage. Dysplasias were evident in all animals. CONCLUSIONS: Anogenital tissues of a common laboratory mouse can be infected with a papillomavirus unique to that animal. This observation will pave the way for fundamental virological and immunological studies that have been challenging to carry out heretofore due to lack of a suitable model system.


Asunto(s)
Canal Anal/virología , Cuello del Útero/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/patología , Vagina/virología , Canal Anal/patología , Animales , Cuello del Útero/patología , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Infecciones por Papillomavirus/genética , Estados Unidos , Vagina/patología , Frotis Vaginal
11.
Cancer Immunol Immunother ; 64(3): 325-36, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25408469

RESUMEN

Adoptive T cell transfer (ACT) has achieved clinical success in treating established cancer, particularly in combination with lymphodepleting regimens. Our group previously demonstrated that ACT following whole-body irradiation (WBI) promotes high-level T cell accumulation, regression of established brain tumors, and long-term protection from tumor recurrence in a mouse model of SV40 T antigen-induced choroid plexus tumors. Here we asked whether an approach that can promote strong donor T-cell responses in the absence of WBI might also produce this dramatic and durable tumor elimination following ACT. Agonist anti-CD40 antibody can enhance antigen-specific CD8(+) T-cell responses and has shown clinical efficacy as a monotherapy in the setting of cancer. We show that anti-CD40 conditioning promotes rapid accumulation of tumor-specific donor CD8(+) T cells in the brain and regression of autochthonous T antigen-induced choroid plexus tumors, similar to WBI. Despite a significant increase in the lifespan, tumors eventually recurred in anti-CD40-conditioned mice coincident with loss of T-cell persistence from both the brain and lymphoid organs. Depletion of CD8(+) T cells from the peripheral lymphoid organs of WBI-conditioned recipients failed to promote tumor recurrence, but donor cells persisted in the brains long-term in CD8-depleted mice. These results demonstrate that anti-CD40 conditioning effectively enhances ACT-mediated acute elimination of autochthonous tumors, but suggest that mechanisms associated with WBI conditioning, such as the induction of long-lived T cells, may be critical for protection from tumor recurrence.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/prevención & control , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/radioterapia , Antígenos CD40/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Supervivencia , Irradiación Corporal Total
12.
Trials Vaccinol ; 3: 134-142, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243025

RESUMEN

Long peptide immunization is a promising strategy to clear established tumors. In the current study, we investigated the therapeutic effect of a naturally existing long peptide that contained two HLA-A2.1 restricted epitopes (CRPVE1/149-157 and CRPVE1/161-169) from cottontail rabbit papillomavirus (CRPV) E1 using our CRPV/HLA-A2.1 transgenic rabbit model. A universal Tetanus Toxin helper motif (TT helper) was tagged at either the N-terminus or the carboxyl-terminus of this long peptide and designated as TT-E1 peptide and E1 peptide-TT respectively. Four groups of HLA-A2.1 transgenic rabbits were infected with wild type CRPV DNA. Three weeks post-infection, the rabbits were immunized four times with TT-E1 peptide, E1peptide only, E1 peptide -TT or TT-control peptide with two-week intervals between immunizations. Tumor outgrowth was monitored and recorded weekly. After the third booster immunization, tumors on two of the four E1 peptide-TT immunized rabbits began to shrink. One animal from this group was free of tumors at the termination of the study. The mean papilloma size of E1 peptide-TT immunized rabbits was significantly smaller when compared with that of the three other groups (P<0.05, one way ANOVA analysis). It is interesting that E1 peptide-TT vaccination not only stimulated stronger T cell mediate immune responses but also stronger antibody generations. We conclude that the location of a TT helper motif tagged at the long peptide vaccine is critical for the outcome of therapeutic responses to persistent tumors in our HLA-A2.1 transgenic rabbit model.

13.
Eur J Immunol ; 44(6): 1716-27, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24752729

RESUMEN

NOD.B10 Idd9.3 mice are congenic for the insulin-dependent diabetes (Idd) Idd9.3 locus, which confers significant type 1 diabetes (T1D) protection and encodes 19 genes, including microRNA (miR)-34a, from T1D-resistant C57BL/10 mice. B cells have been shown to play a critical role in the priming of autoantigen-specific CD4(+) T cells in T1D pathogenesis in non-obese diabetic (NOD) mice. We show that early B-cell development is impaired in NOD.B10 Idd9.3 mice, resulting in the profound reduction of transitional and mature splenic B cells as compared with NOD mice. Molecular analysis revealed that miR-34a expression was significantly higher in B-cell progenitors and marginal zone B cells from NOD.B10 Idd9.3 mice than in NOD mice. Furthermore, miR-34a expression in these cell populations inversely correlated with levels of Foxp1, an essential regulator of B-cell lymphopoiesis, which is directly repressed by miR-34a. In addition, we show that islet-specific CD4(+) T cells proliferated inefficiently when primed by NOD.B10 Idd9.3 B cells in vitro or in response to endogenous autoantigen in NOD.B10 Idd9.3 mice. Thus, Idd9.3-encoded miR-34a is a likely candidate in negatively regulating B-cell lymphopoiesis, which may contribute to inefficient expansion of islet-specific CD4(+) T cells and to T1D protection in NOD.B10 Idd9.3 mice.


Asunto(s)
Linfocitos B/inmunología , Diabetes Mellitus Tipo 1/inmunología , Sitios Genéticos/inmunología , Linfopoyesis/inmunología , MicroARNs/inmunología , Animales , Linfocitos B/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Linfopoyesis/genética , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , MicroARNs/genética , Proteínas Represoras/genética , Proteínas Represoras/inmunología
14.
Curr Probl Dermatol ; 45: 252-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643192

RESUMEN

Prophylactic and therapeutic immunization strategies are an effective method to control human papillomavirus (HPV)-associated diseases and cancers. Current protective virus-like particle and capsid-based vaccines are highly protective against vaccine-matched HPV types, and continued improvements in second-generation vaccines will lead to broader protection and cross-protection against the cancer-associated types. Increasing the effectiveness of broadly cross-protective L2-based immunogens will require adjuvants that activate innate immunity to thus enhance adaptive immunity. Therapeutic immunization strategies are needed to control and cure clinical disease and HPV-associated cancers. Significant advances in strategies to improve induction of cell-mediated immunity to HPV early (and capsid) proteins have been pretested in preclinical animal papillomavirus models. Several of these effective protocols have translated into successful therapeutic immune-mediated clearance of clinical lesions. Nevertheless, there are significant challenges in activating immunity to cancer-associated lesions due to various immune downregulatory events that are triggered by persistent HPV infections. A better understanding of immune responses to HPV lesions in situ is needed to optimize immune effector T cells that efficiently locate to sites of infection and which should lead to an effective immunotherapeutic management of this important human viral pathogen. The most effective immunization strategy may well require combination antiviral and immunotherapeutic treatments to achieve complete clearance of HPV infections and associated cancers.


Asunto(s)
Inmunización/métodos , Papillomaviridae/fisiología , Infecciones por Papillomavirus/tratamiento farmacológico , Vacunas contra Papillomavirus/uso terapéutico , Proteínas de la Cápside/inmunología , Humanos , Inmunidad Humoral/fisiología , Inmunidad Innata/fisiología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología
15.
J Virol ; 87(16): 9391-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23785210

RESUMEN

Papillomavirus disease poses a special challenge to people with compromised immune systems. Appropriate models to study infections in these individuals are lacking. We report here the development of a model that will help to address these deficiencies. The MmuPV1 genome was synthesized and used successfully to produce virus from DNA infections in immunocompromised mice. In these early studies, we have demonstrated both primary and secondary infections, expanded tissue tropism, and extensive dysplasia.


Asunto(s)
Transformación Celular Neoplásica , Papillomaviridae/fisiología , Papillomaviridae/patogenicidad , Tropismo Viral , Animales , ADN Viral/genética , Modelos Animales de Enfermedad , Femenino , Histocitoquímica , Huésped Inmunocomprometido , Ratones , Ratones Desnudos , Cuello/patología , Cuello/virología , Papillomaviridae/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Piel/patología , Piel/virología , Transducción Genética , Transformación Genética , Vagina/patología , Vagina/virología , Vulva/patología , Vulva/virología
16.
Virology ; 438(2): 70-83, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23433866

RESUMEN

Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease.


Asunto(s)
Codón , Papillomavirus del Conejo de Rabo Blanco/genética , Proteínas Oncogénicas Virales/genética , Oncogenes , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Secuencia de Aminoácidos , Animales , Papillomavirus del Conejo de Rabo Blanco/inmunología , Papillomavirus del Conejo de Rabo Blanco/patogenicidad , Genes Virales , Mutación , Proteínas Oncogénicas Virales/química , Papiloma/virología , Conejos
17.
J Neuroimmunol ; 255(1-2): 60-9, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23269203

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease that is mediated by myelin-reactive T cells resulting in CNS demyelination, however the mechanisms that control their activation are unclear. Mice that are transgenic for a myelin proteolipid protein (PLP)-specific TCR spontaneously develop experimental autoimmune encephalomyelitis (EAE), the animal model of MS. They mimic the spontaneous onset of MS and thus offer the unique opportunity to investigate the mechanisms that may contribute to the development of spontaneous CNS autoimmunity. MyD88 is an adaptor protein that mediates signal transduction by TLRs, IL-1R and IL-18R, resulting in the activation of innate immune cells, including DCs. We investigated the requirement of MyD88 in the pathogenesis of spontaneous EAE in PLP TCR transgenic SJL mice. We show that genetic loss of MyD88 does not intrinsically preclude development of spontaneous EAE and autoimmune demyelination in these mice. EAE was associated with functionally mature peripheral DCs that promoted superior PLP-specific Th1 and Th17 responses compared to those from disease-free mice. Together, our data suggest that MyD88-independent innate immune signaling critically contributes to priming of myelin-reactive T cells and development of spontaneous EAE in MyD88-deficient PLP TCR transgenic mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Factor 88 de Diferenciación Mieloide/fisiología , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Inmunidad Innata/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Esclerosis Múltiple/genética , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética
18.
J Gen Virol ; 88(Pt 12): 3286-3293, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18024897

RESUMEN

Shope papillomavirus or cottontail rabbit papillomavirus (CRPV) is one of the first small DNA tumour viruses to be characterized. Although the natural host for CRPV is the cottontail rabbit (Sylvilagus floridanus), CRPV can infect domestic laboratory rabbits (Oryctolagus cuniculus) and induce tumour outgrowth and cancer development. In previous studies, investigators attempted to passage CRPV in domestic rabbits, but achieved very limited success, leading to the suggestion that CRPV infection in domestic rabbits was abortive. The persistence of specific anti-L1 antibody in sera from rabbits infected with either virus or viral DNA led us to revisit the questions as to whether L1 and infectious CRPV can be produced in domestic rabbit tissues. We detected various levels of L1 protein in most papillomas from CRPV-infected rabbits using recently developed monoclonal antibodies. Sensitive in vitro infectivity assays additionally confirmed that extracts from these papillomas were infectious. These studies demonstrated that the CRPV/New Zealand White rabbit model could be used as an in vivo model to study natural virus infection and viral life cycle of CRPV and not be limited to studies on abortive infections.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , Papillomavirus del Conejo de Rabo Blanco , Infecciones por Papillomavirus/sangre , Infecciones por Papillomavirus/virología , Proteínas Estructurales Virales/inmunología , Proteínas Estructurales Virales/aislamiento & purificación , Virión/aislamiento & purificación , Animales , Antígenos Virales/metabolismo , Células Cultivadas , Papillomavirus del Conejo de Rabo Blanco/inmunología , Papillomavirus del Conejo de Rabo Blanco/aislamiento & purificación , ADN Viral/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Infecciones por Papillomavirus/metabolismo , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Estructurales Virales/metabolismo
19.
J Virol ; 81(13): 7171-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17459918

RESUMEN

Three transgenic rabbit lines that express a well-characterized human major histocompatibility complex class I (MHC-I) gene (HLA-A2.1) have been established. All three lines carry the HLA-A2.1 heavy chain and are able to pass the transgene to their offspring with both the outbred and the inbred EIII/JC genetic background. HLA-A2.1 colocalizes exclusively with rabbit MHC-I on the cell surfaces. These HLA-A2.1 transgenic rabbits demonstrated infection patterns similar to those found after cottontail rabbit papillomavirus (CRPV) challenge when compared with results in normal rabbits, although higher regression rates were found in HLA-A2.1 transgenic rabbits. Because the CRPV genome can accommodate significant modifications, the CRPV/HLA-A2.1 rabbit model has the potential to be used to screen HLA-A2.1-restricted immunogenic epitopes from human papillomaviruses in the context of in vivo papillomavirus infection.


Asunto(s)
Papillomavirus del Conejo de Rabo Blanco/inmunología , Modelos Animales de Enfermedad , Antígeno HLA-A2/inmunología , Infecciones por Papillomavirus/inmunología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Línea Celular , Antígeno HLA-A2/genética , Humanos , Infecciones por Papillomavirus/genética , Conejos
20.
J Immunol ; 177(11): 8037-45, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17114477

RESUMEN

We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.


Asunto(s)
Animales Modificados Genéticamente , Linfocitos T CD8-positivos/inmunología , Antígeno HLA-A2/genética , Interacciones Huésped-Parásitos/inmunología , Infecciones por Papillomavirus/inmunología , Conejos/genética , Secuencia de Aminoácidos , Animales , Presentación de Antígeno/inmunología , Papillomavirus del Conejo de Rabo Blanco/genética , Papillomavirus del Conejo de Rabo Blanco/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/inmunología , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Vacunas contra Papillomavirus/inmunología , Programas Informáticos , Transgenes , Vacunas de ADN/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...