Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(5): 1231-1240, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38265415

RESUMEN

Electron transfer (ET) quenching in nonpolar media is not as well understood as in polar environments. Here, we investigate the effect of dipole-dipole interactions between the reactants using ultrafast broadband electronic spectroscopy combined with molecular dynamics simulations. We find that the quenching of the S1 state of two polar dyes, coumarin 152a and Nile red, by the polar N,N-dimethylaniline (DMA) in cyclohexane is faster by a factor up to 3 when exciting on the red edge rather than at the maximum of their S1 ← S0 absorption band. This originates from the inhomogeneous broadening of the band due to a distribution of the number of quencher molecules around the dyes. As a consequence, red-edge excitation photoselects dyes in a DMA-rich environment. Such broadening is not present in acetonitrile, and no excitation wavelength dependence of the ET dynamics is observed. The quenching of both dyes is markedly faster in nonpolar than polar solvents, independently of the excitation wavelength. According to molecular dynamics simulations, this is due to the preferential solvation of the dyes by DMA in cyclohexane. The opposite preferential solvation is predicted in acetonitrile. Consequently, close contact between the reactants in acetonitrile requires partial desolvation. By contrast, the recombination of the quenching product is slower in nonpolar than in polar solvents and exhibits much smaller dependence, if any, on the excitation wavelength.

2.
J Phys Chem Lett ; 14(24): 5602-5606, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37307294

RESUMEN

The nature of the lowest-energy electronic absorption band of crystal violet (CV) and particularly the origin of its high-energy shoulder have been debated since the middle of the past century. The most recent studies invoke a splitting of the S1 state upon symmetry breaking induced by interactions with the solvent and/or the counterion. Using a combination of stationary and time-resolved polarized spectroscopy together with quantum-chemical calculations, we show that torsional disorder in the ground-state results in an inhomogeneous broadening of the absorption band of CV. The center of the band is mostly due to symmetric molecules with a degenerate S1 state, whereas the edges originate from transitions to the S1 and S2 states of distorted symmetry-broken molecules. Transient-absorption measurements with different excitation wavelengths reveal that these two groups of molecules interconvert rapidly in liquid but not in a rigid environment.

3.
Phys Chem Chem Phys ; 24(42): 25979-25989, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36263805

RESUMEN

Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.

4.
J Phys Chem B ; 124(46): 10546-10555, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33147032

RESUMEN

Interfaces with room-temperature ionic liquids (ILs) play key roles in many applications of these solvents, but our understanding of their properties is still limited. We investigate how the addition of ILs in the aqueous subphase affects the adsorption of the cationic dye malachite green at the dodecane/water interface using stationary and time-resolved surface second harmonic generation. We find that the interfacial concentration of malachite green depends crucially on the nature of both anionic and cationic constituents. This concentration reports on the overall charge of the interface, which itself depends on the relative interfacial affinity of the ions. Our results reveal that the addition of ILs to the aqueous subphase has similar effects to the addition of conventional salts. However, the IL cations have a significantly higher propensity to adsorb than small inorganic cations. Furthermore, the IL constituents show a synergistic effect, as the interfacial concentration of each of them also depends on the interfacial affinity of the other.

5.
Phys Chem Chem Phys ; 22(30): 17351-17364, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32699867

RESUMEN

The population and structural dynamics of IrCl62- is studied in acetonitrile and aqueous solutions in comparison to isoelectronic IrBr62- using ultrafast broadband, dispersed transient absorption, with both octahedra excited with 85 fs pulses at four different wavelengths, encompassing the first seven t2g-based electronic states. Ligand-to-metal charge transfer (LMCT) 420 or 490 nm excitation of IrCl62- into Uu'(2T2u) + Eu''(2T2u) states, superimposed due to Ham effect, or Uu'(2T1u), respectively, leads to symmetry lowering due to Jahn-Teller effect in these excited states with the subsequent 100 fs decay into Ug'(2T1g). This first LMCT state is formed vibrationally coherent in the 104 cm-1 t2g (scissor) or 243 cm-1 eg (out-of-phase-stretch) Jahn-Teller modes for the respective excitation wavelength. Direct excitation into Ug'(2T1g) at 600 nm and the intraconfigurational lowest excited Ug'(2T2g) state at 1900 nm helped to establish that Ug'(2T1g) decays via back electron transfer into Ug'(2T2g) (time constants, 3.55 ps in acetonitrile and 0.9 ps in water), and the decay of Ug'(2T2g) into the ground state is the rate-limiting relaxation step. The relaxation cascade of IrBr62- is similar with short-lived (≤100 fs) higher LMCT states, but the vibrational coherence is only observed in the Jahn-Teller t2g mode. Faster back electron transfer for IrBr62- is explained by the energy gap law. The intraconfigurational Ug'(2T2g) states, which are ∼5100 cm-1 above the ground state for both complexes, have a sub-nanosecond lifetime largely independent of the ligand nature (∼350 ps, acetonitrile).

6.
J Phys Chem Lett ; 11(12): 4639-4643, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32397714

RESUMEN

Excited-state relaxation of a prototypical ruthenium nitrosyl complex (pentachloronitrosylruthenate) in water is studied by means of ultrafast dispersed, broadband transient absorption spectroscopy. Excitation pulses (duration, 40-70 fs) utilized at seven different wavelengths in the range from 675 to 335 nm populated excited electronic states of different orbital nature. The second excited singlet state of πNO* nature relaxes into the lowest triplet 3πNO* state in 100 fs via the 1d-d intermediate (lowest excited singlet) state with ca. 80 fs lifetime. The 3πNO* lifetime is 3.2 ps, and all three states are inert toward NO release, which happens in less than 200 fs from higher excited states. The vibrational coherences observed are attributed to the Jahn-Teller effect in the 1πNO* state and nitric oxide loss and provide important insights into the nature of the reaction coordinate in the course of the ultrafast excited-state relaxation dynamics.

8.
J Phys Chem A ; 123(34): 7374-7383, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31386369

RESUMEN

Ultrafast transient absorption spectroscopy, NOESY-NMR, and EPR spectroscopy shed light on how π-π stacking interactions combined with electrostatic interactions can be used to form stable ion-pair complexes between pyrylium and tetraarylborate ions in which the interaction of the π-delocalized clouds promotes the observation of new radiative processes and also electron transfer processes excitation using visible light. The results exhibit a striking combination of properties, chemical stability and photophysical and photochemical events, that make these ion-pair complexes as a step toward the realization of chromophore/luminescent materials and also their use as a new monophotoinitiator system in radical polymerization reactions.

9.
J Am Chem Soc ; 141(28): 11286-11297, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31265269

RESUMEN

Assemblies of metal nanostructures and fluorescent molecules represent a promising platform for the development of biosensing and near-field imaging applications. Typically, the interaction of molecular fluorophores with surface plasmons in metals results in either quenching or enhancement of the dye excitation energy. Here, we demonstrate that fluorescent molecules can also engage in a reversible energy transfer (ET) with proximal metal surfaces, during which quenching of the dye emission via the energy transfer to localized surface plasmons can trigger delayed ET from metal back to the fluorescent molecule. The resulting two-step process leads to the sustained delayed photoluminescence (PL) in metal-conjugated fluorophores, as was demonstrated here through the observation of increased PL lifetime in assemblies of Au nanoparticles and organic dyes (Alexa 488, Cy3.5, and Cy5). The observed enhancement of the PL lifetime in metal-conjugated fluorophores was corroborated by theoretical calculations based on the reverse ET model, suggesting that these processes could be ubiquitous in many other dye-metal assemblies.


Asunto(s)
Colorantes Fluorescentes/química , Oro/química , Luminiscencia , Nanopartículas del Metal/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Procesos Fotoquímicos , Propiedades de Superficie
10.
J Chem Phys ; 150(5): 054302, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736677

RESUMEN

The photophysical properties of intraconfigurational metal-centered (MC) and ligand-to-metal charge transfer (LMCT) states were studied in a prototype low spin heavy d5 transition metal complex, IrBr6 2-. The femtosecond-to-picosecond dynamics of this complex was investigated in solutions of drastically different polarity (acetonitrile, chloroform, and water) by means of ultrafast broadband transient absorption spectroscopy. We observed that the system, when excited into the third excited [second LMCT, 2Uu'(T1u)] state, undergoes distortion from the Franck-Condon geometry along the t2g vibrational mode as a result of the Jahn-Teller effect, followed by rapid internal conversion to populate (90 fs) the second excited [first LMCT, 2Ug'(T1g)] state. Vibrational decoherence and vibrational relaxation (∼400 fs) in 2Ug'(T1g) precede the decay of this state via internal conversion (time constants, 2.8 and 3 ps in CH3CN and CHCl3 and 0.76 ps in water), which can also be viewed as back electron transfer and which leads into the intraconfigurational MC 2Ug'(T2g) state. This is the lowest-excited state, from which the system returns to the ground state. This MC state is metastable in both CH3CN and CHCl3 (lifetime, ∼360 ps), but is quenched via OH-mediated energy transfer in aqueous environments, with the lifetime shortening up to 21 ps in aqueous solutions. The cascade relaxation mechanism is the same upon excitation into the second excited state. Excitation of IrBr6 2- in chloroform into higher 2Uu'(T2u), 2Eu″(T2u), and 2Eg'(T1g) states is observed to populate the third excited 2Uu'(T1u) state within 100 fs. These experiments allow us to resolve the ultrafast relaxation coordinate and emphasize that the excited-state Jahn-Teller effect is a driving force in the ultrafast dynamics, even for heavy transition metal complexes with very significant spin-orbit interactions.

11.
J Am Chem Soc ; 139(23): 7681-7684, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28509547

RESUMEN

Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (kobs < 1012 s-1) and twisted (kobs ∼ 1010 s-1) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 µs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V•+).

12.
J Am Chem Soc ; 139(23): 7815-7822, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28535356

RESUMEN

The emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifested in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4-16.0% range.

13.
J Phys Chem B ; 121(17): 4562-4568, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28384409

RESUMEN

Nonradiative relaxation dynamics of CuCl42- complexes photoexcited into the highest-energy ligand-field electronic state (2A1) is studied in acetonitrile, dichloromethane, and chloroform solvents, as well as in acetonitrile-water and in acetonitrile-deuterated water mixtures. Due to ultrafast internal conversion, this excited state directly converts to the electronic ground state in dichloromethane and chloroform. The nonradiative relaxation constant is similar in anhydrous acetonitrile. Addition of water to acetonitrile solutions efficiently quenches the excited ligand-field 2A1 state. The quenching is proposed to be due to the diffusion-controlled formation of an electronically excited pentacoordinated [CuCl4H2O]2- encounter complex or a short-lived exciplex of similar structure, in which the electronic excitation energy transfers into the O-H stretch of the coordinated H2O molecule. This is followed by the dissociation of the pentacoordinated species, resulting in the reformation of the ground-state CuCl42- and free H2O molecules.

14.
Phys Chem Chem Phys ; 18(39): 27671-27683, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27722587

RESUMEN

The stepwise photoinduced charge transfer in a series of N-carbazolyl benzoate ester push-pull chromophores has been studied in solution. Dual emission from the locally excited (LE, the lowest-energy singlet excited state of 1Lb nature localized on the carbazole donor) and the highly polarized, intramolecular charge-transfer states of (pre)-twisted type (TICT states) is observed in non-polar and polar solvents. Ultrafast transient spectroscopy reveals that the excitation into the 1Lb LE state is followed by rapid (∼ps) charge separation into an emissive TICT state. Excitation into the second singlet excited state localized on the carbazole (S2) with 1La nature results in sub-100 fs population of both 1Lb and TICT states.

15.
Phys Chem Chem Phys ; 18(41): 28883-28892, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27722308

RESUMEN

Femtosecond transient absorption measurements powered by 40 fs laser pulses reveal that ultrafast isomerization takes place upon S1 excitation of both CH2I2 and CHBr3 in the gas phase. The photochemical conversion process is direct and intramolecular, i.e., it proceeds without caging media that have long been implicated in the photo-induced isomerization of polyhalogenated alkanes in condensed phases. Using multistate complete active space second order perturbation theory (MS-CASPT2) calculations, we investigate the structure of the photochemical reaction paths connecting the photoexcited species to their corresponding isomeric forms. Unconstrained minimum energy paths computed starting from the S1 Franck-Condon points lead to S1/S0 conical intersections, which directly connect the parent CHBr3 and CH2I2 molecules to their isomeric forms. Changes in the chemical bonding picture along the S1/S0 isomerization reaction path are described using multireference average coupled pair functional (MRACPF) calculations in conjunction with natural resonance theory (NRT) analysis. These calculations reveal a complex interplay between covalent, radical, ylidic, and ion-pair dominant resonance structures throughout the nonadiabatic photochemical isomerization processes described in this work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...