Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lasers Surg Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650443

RESUMEN

OBJECTIVES: The aim of this work is to assess the performance of multimodal spectroscopic approach combined with single core optical fiber for detection of bladder cancer during surgery in vivo. METHODS: Multimodal approach combines diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy in the visible (405 nm excitation) and near-infrared (NIR) (690 nm excitation) ranges, and high-wavenumber Raman spectroscopy. All four spectroscopic methods were combined in a single setup. For 21 patients with suspected bladder cancer or during control cystoscopy optical spectra of bladder cancer, healthy bladder wall tissue and/or scars were measured. Classification of cancerous and healthy bladder tissue was performed using machine learning methods. RESULTS: Statistically significant differences in relative total haemoglobin content, oxygenation, scattering, and visible fluorescence intensity were found between tumor and normal tissues. The combination of DRS and visible fluorescence spectroscopy allowed detecting cancerous tissue with sensitivity and specificity of 78% and 91%, respectively. The addition of features extracted from NIR fluorescence and Raman spectra did not improve the quality of classification. CONCLUSIONS: This study demonstrates that multimodal spectroscopic approach allows increasing sensitivity and specificity of bladder cancer detection in vivo. The developed approach does not require special probes and can be used with single-core optical fibers applied for laser surgery.

2.
J Biophotonics ; : e202300509, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185913

RESUMEN

This study investigates the relationship between body hydration levels and skin hydration using spatially resolved diffuse reflectance spectroscopy. The research involved monitoring skin dehydration and rehydration under various conditions, including thermal and physical loads on healthy volunteers, and diuretic therapy in patients with edema syndrome. Findings indicate a correlation between body mass reduction and skin hydration: a 1% loss in body mass corresponds to a 10% decrease in skin hydration. During thermal stress, water absorption at 970 nm decreased monotonically without recovery. Physical activity resulted in approximately 10% changes in skin water content within 20 min, followed by rehydration. Patients with edema syndrome exhibited the most substantial decrease in water absorption amplitude, at nearly 30%, during diuretic treatment. These results support optical spectroscopy as a non-invasive tool for assessing body hydration, with implications for developing portable hydration monitoring devices for clinical and sports applications.

3.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373410

RESUMEN

A reaction of acyl chlorides derived from 1,10-phenanthroline-2,9-dicarboxylic acids with piperazine allows the preparation of the corresponding 24-membered macrocycles in good yield. The structural and spectral properties of these new macrocyclic ligands were thoroughly investigated, revealing promising coordination properties towards f-elements (Am, Eu). It was shown that the prepared ligands can be used for selective extraction of Am(III) from alkaline-carbonate media in presence of Eu(III) with an SFAm/Eu up to 40. Their extraction efficiency is higher than calixarene-type extraction of the Am(III) and Eu(III) pair. Composition of macrocycle-metal complex with Eu(III) was investigated by luminescence and UV-vis spectroscopy. The possibility of such ligands to form complexes of L:Eu = 1:2 stoichiometry is revealed.


Asunto(s)
Complejos de Coordinación , Diamida , Modelos Moleculares , Ligandos , Complejos de Coordinación/química
4.
J Biomed Opt ; 28(5): 057002, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37193365

RESUMEN

Significance: Edema occurs in the course of various skin diseases. It manifests itself in changes in water concentrations in skin layers: dermis and hypodermis and their thicknesses. In medicine and cosmetology, objective tools are required to assess the skin's physiological parameters. The dynamics of edema and the skin of healthy volunteers were studied using spatially resolved diffuse reflectance spectroscopy (DRS) in conjunction with ultrasound (US). Aim: In this work, we have developed a method based on DRS with a spatial resolution (SR DRS), allowing us to simultaneously assess water content in the dermis, dermal thickness, and hypodermal thickness. Approach: An experimental investigation of histamine included edema using SR DRS under the control of US was conducted. An approach for skin parameter determination was studied and confirmed using Monte-Carlo simulation of diffuse reflectance spectra for a three-layered system with the varying dermis and hypodermis parameters. Results: It was shown that an interfiber distance of 1 mm yields a minimal relative error of water content determination in the dermis equal to 9.3%. The lowest error of hypodermal thickness estimation was achieved with the interfiber distance of 10 mm. Dermal thickness for a group of volunteers (7 participants, 21 measurement sites) was determined using SR DRS technique with an 8.3% error using machine learning approaches, taking measurements at multiple interfiber distances into account. Hypodermis thickness was determined with root mean squared error of 0.56 mm for the same group. Conclusions: This study demonstrates that measurement of the skin diffuse reflectance response at multiple distances makes it possible to determine the main parameters of the skin and will serve as the basis for the development and verification of an approach that works in a wide range of skin structure parameters.


Asunto(s)
Edema , Piel , Humanos , Piel/diagnóstico por imagen , Piel/química , Análisis Espectral/métodos , Simulación por Computador , Método de Montecarlo
5.
Biomed Opt Express ; 14(4): 1509-1521, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078039

RESUMEN

Studies of the optical properties of biological tissues in the infrared range have demonstrated significant potential for diagnostic tasks. One of the insufficiently explored ranges for diagnostic problems at the moment is the fourth transparency window, or short wavelength infrared region II (SWIR II). A Cr2+:ZnSe laser with tuning capability in the range from 2.1 to 2.4 µm was developed to explore the possibilities in this region. The capability of diffuse reflectance spectroscopy to analyze water and collagen content in biosamples was investigated using the optical gelatin phantoms and the cartilage tissue samples during their drying process. It was demonstrated that decomposition components of the optical density spectra correlated with the partial content of the collagen and water in the samples. The present study indicates the possibility of using this spectral range for the development of diagnostic methods, in particular, for observation of the changes in the content of cartilage tissue components in degenerative diseases such as osteoarthritis.

6.
J Phys Chem B ; 127(9): 1890-1900, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36799909

RESUMEN

Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/química , Cianobacterias/metabolismo , Análisis Espectral , Transducción de Señal , Carotenoides/química , Ficobilisomas/química
7.
J Biophotonics ; 16(3): e202200149, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36066126

RESUMEN

Osteoarthritis (OA) is one of the most common joint diseases worldwide. Unfortunately, clinical methods lack the ability to detect OA in the early stages. Timely detection of the knee joint degradation at the level of tissue changes can prevent its progressive damage. Here, diffuse reflectance spectroscopy (DRS) in the NIR range was used to obtain optical markers of the cartilage damage grades and to assess its mechanical properties. It was observed that the water content obtained by DRS strongly correlates with the cartilage thickness (R = .82) and viscoelastic relaxation time (R = .7). Moreover, the spectral parameters, including water content (OH-band), protein content (CH-band), and scattering parameters allowed for discrimination between the cartilage damage grades (10-4 < P ≤ 10-3 ). The developed approach may become a valuable addition to arthroscopy, helping to identify lesions at the microscopic level in the early stages of OA and complement the surgical analysis.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/patología , Osteoartritis/patología , Articulación de la Rodilla/patología , Análisis Espectral , Agua
8.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555408

RESUMEN

Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100-500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities.


Asunto(s)
Membrana Eritrocítica , Compuestos Orgánicos , Viscosidad , Polarización de Fluorescencia , Membrana Celular
9.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558318

RESUMEN

We aimed to assess the influence of professional dental prophylaxis on the translucency and color stability of a novel simplified shade nanohybrid composite material. Sixty composite disks (5 mm in diameter and 2 mm thick) of light (n = 30) and dark (n = 30) shades were prepared. The specimens were randomly divided into the following three groups (n = 10) according to the prophylaxis procedure used: ultrasonic scaling, air-powder polishing with sodium bicarbonate, and controls. The specimens were submitted to translucency and color analysis based on the CIELab system. Two measurements were performed before and after 48-h storage in coffee. Translucency values of untreated light and dark specimens were 9.15 ± 0.38 and 5.28 ± 1.10, respectively. Air-powder polishing decreased the translucency of the light composite specimens. Storage in coffee resulted in color changes (∆E) ranging between 2.69 and 12.05 and a mean translucency decrease ranging between -0.88 and -6.91. The samples in the light group tended to exhibit greater staining; the treatment method had no effect on ∆E. It can be concluded that light-shade composite restorations are more prone to translucency and color changes resulting from air-powder polishing and contact with staining media. However, further research using other composites and powders is required.

10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217616

RESUMEN

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique, is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters of endogenous fluorophores, such as NAD(P)H. To achieve accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this paper, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity is demonstrated. This has been achieved using an approach to data analysis based on the nonparametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations compared to more traditional approaches of FLIM measurements and analysis. The approach was further validated for imaging cultured cancer cells treated with chemotherapy. These results pave the way for accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.


Asunto(s)
Neoplasias/metabolismo , Imagen Óptica/métodos , Progresión de la Enfermedad , Humanos , Neoplasias/patología
11.
J Biophotonics ; 15(1): e202100268, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34661967

RESUMEN

Quantitative noninvasive assessment of water content in tissues is important for biomedicine. Optical spectroscopy is potentially capable of solving this problem; however, its applicability for clinical diagnostics remains questionable. The presented study compares diffuse reflectance spectroscopy, Raman spectroscopy and multispectral imaging in the characterization of cutaneous edema. The source-detector geometries for each method are selected based on Monte Carlo simulations results to detect the signal from the dermis. Then, the kinetics of the edema development is studied for two models. All methods demonstrate synchronous trends for histamine-induced edema: The water content reaches a maximum of 1 hour after histamine application and then gradually decreases. For the venous occlusion, a 51% increase in water content is observed with Raman spectroscopy. The differences in water content estimation by three methods are explained based on the light propagation model. The obtained results are essential for introducing quantitative optical water measurement technology to the clinics.


Asunto(s)
Edema , Espectrometría Raman , Diagnóstico por Imagen , Edema/diagnóstico por imagen , Humanos , Método de Montecarlo , Agua
12.
Materials (Basel) ; 14(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947102

RESUMEN

Diffuse reflectance spectroscopy (DRS) and imaging are increasingly being used in surgical guidance for tumor margin detection during endoscopic operations. However, the accuracy of the boundary detection with optical techniques may depend on the acquisition parameters, and its evaluation is in high demand. In this work, using optical phantoms with homogeneous and heterogeneous distribution of chromophores mimicking normal and pathological bladder tissues, the accuracy of tumor margin detection using single-fiber diffuse reflectance spectroscopy and spatial frequency domain imaging was evaluated. We also showed how the diffuse reflectance response obtained at different spatial frequencies with the spatial frequency domain imaging technique could be used not only to quantitatively map absorption and scattering coefficients of normal tissues and tumor-like heterogeneities but also to estimate the tumor depth localization. The demonstrated results could be helpful for proper analysis of the DRS data measured in vivo and for translation of optical techniques for tumor margin detection to clinics.

13.
Environ Sci Technol ; 55(15): 10365-10377, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34260209

RESUMEN

Humification is a ubiquitous natural process of biomass degradation that creates multicomponent systems of nonliving organic matter, including dissolved organic matter (DOM) and humic substances (HS) in water environments, soils, and organic rocks. Despite significant differences in molecular composition, the optical properties of DOM and HS are remarkably similar, and the reason for this remains largely unknown. Here, we employed fluorescence spectroscopy with (sub)picosecond resolution to elucidate the role of electronic interactions within DOM and HS. We revealed an ultrafast decay component with a characteristic decay lifetime of 0.5-1.5 ps and spectral diffusion originating from excitation energy transfer (EET) in the system. The rate of EET was positively correlated to the fraction of aromatic species and tightness of aromatic species packing. Diminishing the number of EET donor-acceptor pairs by reduction with NaBH4 (decrease of the acceptor number), decrease of pH (decrease of the electron-donating ability), or decrease of the average particle size by filtration (less donor-acceptor pairs within a particle) resulted in a lower impact of the ultrafast component on fluorescence decay. Our results uncover the role of electronic coupling among fluorophores in the formation of DOM and HS optical properties and provide a framework for studying photophysical processes in heterogeneous systems of natural fluorophores.


Asunto(s)
Sustancias Húmicas , Suelo , Biomasa , Transferencia de Energía , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia
14.
Langmuir ; 37(4): 1365-1371, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33471539

RESUMEN

The freezing-induced loading (FIL) method is a promising technique for encapsulation of bioactive substances as well as for preparation of nanocomposite materials. A critically important aspect for this method is the remote control of the freezing process. The knowledge of the moment of freezing process ending can allow us to increase the quality of loading and reduce the process duration, thus making this approach more controllable. Herein, we present a photonic technique based on Raman spectroscopy as one of the optimal solutions for remote control of FIL. As a result of our study, the setup for obtaining Raman spectra during the process of liquid vehicle crystallization in suspensions has been developed, which allowed us to analyze the sorption of nanoparticles onto micro- and submicron particles by the FIL method in situ. The main focus of the present work is the in situ Raman spectroscopy monitoring of the crystallization process, including technologically important parameters such as the ice/water interface velocity in water colloids/suspensions and the moment of the final adsorption of the nanoparticles on the microparticles. In contrast to other approaches, Raman spectroscopy allows to directly observe the hydrogen bond formation during crystallization. Additionally, a schematic and a detailed description of the setup are presented here. Thus, the developed technique has a good perspective for scaling up the FIL approach and increasing the area of application of this technology.

15.
Diagnostics (Basel) ; 10(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353241

RESUMEN

Edema, i.e., fluid accumulation in the interstitial space, accompanies numerous pathological states of the human organism, including heart failure (HF), inflammatory response, and lymphedema. Nevertheless, techniques for quantitative assessment of the edema's severity and dynamics are absent in clinical practice, and the analysis is mainly limited to physical examination. This fact stimulates the development of novel methods for fast and reliable diagnostics of fluid retention in tissues. In this work, we focused on the possibilities of two microscopic techniques, nailfold video capillaroscopy (NVC) and confocal laser scanning microscopy (CLSM), in the assessment of the short-term and long-term cutaneous edema. We showed that for the patients with HF, morphological parameters obtained by NVC-namely, the apical diameter of capillaries and the size of the perivascular zone-indicate long-term edema. On the other hand, for healthy volunteers, the application of two models of short-term edema, venous occlusion, and histamine treatment of the skin, did not reveal notable changes in the capillary parameters. However, a significant reduction of the NVC image sharpness was observed in this case, which was suggested to be due to water accumulation in the epidermis. To verify these findings, we made use of CLSM, which provides the skin structure with cellular resolution. It was observed that for the histamine-treated skin, the areas of the dermal papillae become hyporefractive, leading to the loss of contrast and the lower visibility of capillaries. Similar effect was observed for patients undergoing infusion therapy. Collectively, our results reveal the parameters can be used for pericapillary edema assessment using the NVC and CLSM, and paves the way for their application in a clinical set-up.

16.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859090

RESUMEN

Thioflavin T (ThT) assay is extensively used for studying fibrillation kinetics in vitro. However, the differences in the time course of ThT fluorescence intensity and lifetime and other physical parameters of the system, such as particle size distribution, raise questions about the correct interpretation of the aggregation kinetics. In this work, we focused on the investigation of the mechanisms, which underlay the difference in sensitivity of ThT fluorescence intensity and lifetime to the formation of protein aggregates during fibrillation by the example of insulin and during binding to globular proteins. The assessment of aggregate sizes and heterogeneity was performed using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Using the sub-nanosecond resolution measurements, it was shown that the ThT lifetime is sensitive to the appearance of as much as a few percent of ThT bound to the high-affinity sites that occur simultaneously with an abrupt increase of the average particle size, particles concentration, and size heterogeneity. The discrepancy between ThT fluorescence intensity and a lifetime can be explained as the consequence of a ThT molecule fraction with ultrafast decay and weak fluorescence. These ThT molecules can only be detected using time-resolved fluorescence measurements in the sub-picosecond time domain. The presence of a bound ThT subpopulation with similar photophysical properties was also demonstrated for globular proteins that were attributed to non-specifically bound ThT molecules with a non-rigid microenvironment.


Asunto(s)
Amiloide/química , Benzotiazoles/química , Colorantes Fluorescentes/química , Dispersión Dinámica de Luz , Humanos , Nanopartículas , Tamaño de la Partícula
17.
Sci Rep ; 10(1): 3861, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123252

RESUMEN

Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.


Asunto(s)
Bungarotoxinas/química , Proteínas Neurotóxicas de Elápidos/química , Simulación de Dinámica Molecular , Neurotoxinas/química , Péptidos/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Unión Proteica , Estructura Secundaria de Proteína
18.
Biomed Opt Express ; 10(8): 4220-4236, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31453006

RESUMEN

Blood cell analysis is one of the standard clinical tests. Despite the widespread use of exogenous markers for blood cell quantification, label-free optical methods are still of high demand due to their possibility for in vivo application and signal specific to the biochemical state of the cell provided by native fluorophores. Here we report the results of blood cell characterization using label-free fluorescence imaging techniques and flow-cytometry. Autofluorescence parameters of different cell types - white blood cells, red blood cells, erythrophagocytic cells - are assessed and analyzed in terms of molecular heterogeneity and possibilities of differentiation between different cell types in vitro and in vivo.

19.
Biophys J ; 109(3): 595-607, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26244741

RESUMEN

Orange carotenoid protein (OCP) is the photoactive protein that is responsible for high light tolerance in cyanobacteria. We studied the kinetics of the OCP photocycle by monitoring changes in its absorption spectrum, intrinsic fluorescence, and fluorescence of the Nile red dye bound to OCP. It was demonstrated that all of these three methods provide the same kinetic parameters of the photocycle, namely, the kinetics of OCP relaxation in darkness was biexponential with a ratio of two components equal to 2:1 independently of temperature. Whereas the changes of the absorption spectrum of OCP characterize the geometry and environment of its chromophore, the intrinsic fluorescence of OCP reveals changes in its tertiary structure, and the fluorescence properties of Nile red indicate the exposure of hydrophobic surface areas of OCP to the solvent following the photocycle. The results of molecular-dynamics studies indicated the presence of two metastable conformations of 3'-hydroxyechinenone, which is consistent with characteristic changes in the Raman spectra. We conclude that rotation of the ß-ionylidene ring in the C-terminal domain of OCP could be one of the first conformational rearrangements that occur during photoactivation. The obtained results suggest that the photoactivated form of OCP represents a molten globule-like state that is characterized by increased mobility of tertiary structure elements and solvent accessibility.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Luminiscentes/química , Simulación de Dinámica Molecular , Absorción de Radiación , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cianobacterias/química , Colorantes Fluorescentes/farmacología , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
20.
J Phys Chem B ; 118(24): 6626-33, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24914992

RESUMEN

Intrinsic fluorescence quenching of bovine serum albumin (BSA) and europium(III) luminescence in BSA complexes were investigated. The number of BSA binding sites (n) and equilibrium constant (Keq) values were determined from both measurements provided qualitatively different results. While the modified Stern-Volmer relation for BSA fluorescence quenching gave n = 1 at pH 4.5 and pH 6, two sets of binding sites were determined from Eu(3+) luminescence with n1 = 2, n2 = 4 at pH 6 and n1 = 1, n2 = 2 at pH 4.5. The model explaining the discrepancy between the results obtained by these fluorescent approaches was suggested, and the limitations in application of the "log-log" Stern-Volmer plots in analysis of binding processes were discussed.


Asunto(s)
Europio/química , Albúmina Sérica Bovina/química , Animales , Sitios de Unión , Bovinos , Europio/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...