Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38473643

RESUMEN

This paper presents a comprehensive assessment of the suitability of seven commercially available polymers for crafting laboratory models designed for dynamic shaking-table tests using 3D-printing technology. The objective was to determine whether 3D-printed polymer models are effective for dynamic assessments of structures. The polymers underwent experimental investigations to assess their material properties, i.e., the elastic modulus, the mass density, and the limit of linear-elastic behaviour. The following methodology was applied to obtain the correct values of elasticity moduli and yield points of the polymers: (1) the uniaxial tensile test, (2) the compression test, and (3) the three-point loading test. The filament density was determined as the ratio of sample mass to its volume. The results indicate substantial variations in stiffness, density, and elasticity limits among them. For the similarity analysis, an existing reinforced concrete chimney 120 m high was chosen as a prototype. A geometric similarity scale of 1:120 for a laboratory mock-up was adopted, and a numerical model of the mock-up was created. The similarity scales were calculated for mock-ups made of each filament. Based on these scales, numerical calculations of natural frequencies and dynamic performance under a strong earthquake were carried out for models made of different polymers. Assessment of the polymers' suitability for laboratory models revealed positive outcomes. The agreement between field experiments, shaking-table tests, and numerical predictions in terms of natural frequencies was observed. Maximum stresses resulting from the earthquake indicated the satisfactory performance of the model below the linear-elastic limit. Despite differences in material properties, the selected polymers were deemed suitable for 3D-printing models for shaking-table tests. However, the discussion raised some important considerations. The upper frequency limit of the shaking-table imposes restrictions on the number of natural frequencies that can be determined. Numerical assessments of natural frequencies are recommended to prevent underestimation and to assess the feasibility of their determination. Additionally, resonance during natural frequency determination may lead to exceeding the linear-elastic limit, affecting filament properties, and making the similarity criteria invalid. Practically, this research contributes insights for planning shaking-table tests, aiding in selecting the most suitable filament and highlighting crucial considerations to ensure reliable and accurate dynamic assessments.

2.
Polymers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683908

RESUMEN

Currently, medicine uses typical industrial structure techniques, including reverse engineering, data processing, 3D-CAD modeling, 3D printing, and coordinate measurement techniques. Taking this into account, one can notice the applications of procedures used in the aviation or automotive industries based on the structure of Industry 4.0 in the planning of operations and the production of medical models with high geometric accuracy. The procedure presented in the publication shortens the processing time of tomographic data and increases the reconstruction accuracy within the hip and knee joints. The procedure allows for the partial removal of metallic artifacts from the diagnostic image. Additionally, numerical models of anatomical structures, implants, and bone cement were developed in more detail by averaging the values of local segmentation thresholds. Before the model manufacturing process, additional tests of the PLA material were conducted in terms of its strength and thermal properties. Their goal was to select the appropriate type of PLA material for manufacturing models of anatomical structures. The numerical models were divided into parts before being manufactured using the Fused Filament Fabrication technique. The use of the modifier made it possible to change the density, type of filling, number of counters, and the type of supporting structure. These treatments allowed us to reduce costs and production time and increase the accuracy of the printout. The accuracy of the manufactured model geometry was verified using the MCA-II measuring arm with the MMDx100 laser head and surface roughness using a 3D Talyscan 150 profilometer. Using the procedure, a decrease in geometric deviations and amplitude parameters of the surface roughness were noticed. The models based on the presented approach allowed for detailed and meticulous treatment planning.

3.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458276

RESUMEN

Tissue engineering is an interdisciplinary field of science that has developed very intensively in recent years. The first part of this review describes materials with medical and dental applications from the following groups: metals, polymers, ceramics, and composites. Both positive and negative sides of their application are presented from the point of view of medical application and mechanical properties. A variety of techniques for the manufacture of biomedical components are presented in this review. The main focus of this work is on additive manufacturing and 3D printing, as these modern techniques have been evaluated to be the best methods for the manufacture of medical and dental devices. The second part presents devices for skull bone reconstruction. The materials from which they are made and the possibilities offered by 3D printing in this field are also described. The last part concerns dental transitional implants (scaffolds) for guided bone regeneration, focusing on polylactide-hydroxyapatite nanocomposite due to its unique properties. This section summarises the current knowledge of scaffolds, focusing on the material, mechanical and biological requirements, the effects of these devices on the human body, and their great potential for applications.

4.
Environ Sci Pollut Res Int ; 29(21): 31467-31475, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35013967

RESUMEN

This paper discusses interactions between the generation, collection and recovery of used tyres while considering an indicator of their mass accumulation per area in Poland. Notably, this study aimed to assess selected issues related to used tyre management efficiency from 2008 to 2018 based on European Union and national regulations. Within 11 years, over 5 million Mg of used tyres was introduced into the domestic market-exceeding the amount required for 50 million registered vehicles. It was demonstrated that a significant tyre waste management process involved the recovery of 47% of all tyres, which was almost entirely correlated with the total volume of tyres. Only the growth trend for generated tyres was considered significant, and the rarely used indicator of the accumulation of used tyres per area exhibited an uneven accumulation of used tyres, with the highest amount being 48.06 Mg km-2 in a region with a small area but a significant volume of waste tyres. Therefore, the management of used tyres requires action in the country to optimally increase this form of waste collection while consolidating the development, gathering and processing infrastructure in the context of further minimising environmental pressure and increasing the efficiency of their use by considering the 4R principle.


Asunto(s)
Administración de Residuos , Unión Europea , Polonia
5.
J Clin Med ; 10(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884227

RESUMEN

The application of anatomical models and surgical templates in maxillofacial surgery allows, among other benefits, the increase of precision and the shortening of the operation time. Insufficiently precise anastomosis of the broken parts of the mandible may adversely affect the functioning of this organ. Applying the modern mechanical engineering methods, including computer-aided design methods (CAD), reverse engineering (RE), and rapid prototyping (RP), a procedure used to shorten the data processing time and increase the accuracy of modelling anatomical structures and the surgical templates with the use of 3D printing techniques was developed. The basis for developing and testing this procedure was the medical imaging data DICOM of patients treated at the Maxillofacial Surgery Clinic of the Fryderyk Chopin Provincial Clinical Hospital in Rzeszów. The patients were operated on because of malignant tumours of the floor of the oral cavity and the necrosis of the mandibular corpus, requiring an extensive resection of the soft tissues and resection of the mandible. Familiarity with and the implementation of the developed procedure allowed doctors to plan the operation precisely and prepare the surgical templates and tools in terms of the expected accuracy of the procedures. The models obtained based on this procedure shortened the operation time and increased the accuracy of performance, which accelerated the patient's rehabilitation in the further course of events.

6.
Polymers (Basel) ; 13(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34372056

RESUMEN

As part of the present work, polymer composites used in 3D printing technology, especially in Melted and Extruded Manufacturing (MEM) technology, were obtained. The influence of modified fillers such as alumina modified silica, quaternary ammonium bentonite, lignin/silicon dioxide hybrid filler and unmodified multiwalled carbon nanotubes on the properties of polycarbonate (PC) composites was investigated. In the first part of the work, the polymer and its composites containing 0.5-3 wt.% filler were used to obtain a filament using the proprietary technological line. The moldings for testing functional properties were obtained with the use of 3D printing and injection molding techniques. In the next part of the work, the rheological properties-mass flow rate (MFR) and mechanical properties-Rockwell hardness, Charpy impact strength and static tensile strength with Young's modulus were examined. The structure of the obtained composites was also described and determined using scanning electron microscopy (SEM). The porosity, roughness and dimensional stability of samples obtained by 3D printing were also determined. On the other hand, the physicochemical properties were presented on the basis of the research results using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), wide angle X-ray scattering analysis (WAXS) and Fourier Transform infrared spectroscopy (FT-IR). Additionally, the electrical conductivity of the obtained composites was investigated. On the basis of the obtained results, it was found that both the amount and the type of filler significantly affected the functional properties of the composites tested in the study.

7.
Materials (Basel) ; 14(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205010

RESUMEN

Polymer fiber composites are increasingly being used in many industries, including the defense industry. However, for protective applications, in addition to high specific strength and stiffness, polymer composites are also required to have a high energy absorption capacity. To improve the performance of fiber-reinforced composites, many researchers have modified them using multiple methods, such as the introduction of nanofillers into the polymer matrix, the modification of fibers with nanofillers, the impregnation of fabrics using a shear thickening fluid (STF) or a shear thickening gel (STG), or a combination of these techniques. In addition, the physical structures of composites have been modified through reinforcement hybridization; the appropriate design of roving, weave, and cross-orientation of fabric layers; and the development of 3D structures. This review focuses on the effects of modifying composites on their impact energy absorption capacity and other mechanical properties. It highlights the technologies used and their effectiveness for the three main fiber types: glass, carbon, and aramid. In addition, basic design considerations related to fabric selection and orientation are indicated. Evaluation of the literature data showed that the highest energy absorption capacities are obtained by using an STF or STG and an appropriate fiber reinforcement structure, while modifications using nanomaterials allow other strength parameters to be improved, such as flexural strength, tensile strength, or shear strength.

8.
Materials (Basel) ; 14(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204739

RESUMEN

The application of direct metal laser sintering renders it possible to manufacture models with complex geometries. However, there are certain limits to the application of this method connected with manufacturing thin-walled cuboidal elements, as well as cylinders and holes with small diameters. The principal objective of the research was to determine the accuracy of manufacturing geometries with small cross-sections and the possibility of application in heat exchangers that are radiators with radially arranged ribs. To that end, four specimens were designed and manufactured; their geometries of representations assumed for the purpose of research (analysis) changed dimensions within the following scope: 10-0.1 mm. The specimens to be applied in the research were manufactured with 17-4 PH stainless steel (1.4542) with the application of 3D-DMLS printing and an EOS M270 printer. The measurement of accuracy was performed with the application of an optical stereomicroscope (KERN OZL-466). In addition to that, research into the chemical composition of the material, as well as the size of spherical agglomerates, was conducted with the application of a scanning electron microscope. The analysis of the chemical composition was conducted as well (after the sintering process). The analysis of the results based on the values received by means of measurements of the manufactured geometries was divided into three parts. Based on this, it is possible to conclude that the representation of models manufactured with the application of DMLS was comparable with the assumptions, and that the deviations between a nominal dimension and that received in the course of the research were within the following scope: 0-0.1 mm. At the final stage of research and based on the received results, two heat exchangers were manufactured.

9.
Polymers (Basel) ; 13(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34301029

RESUMEN

The development of new solutions in craniofacial surgery brings the need to increase the accuracy of 3D printing models. The accuracy of the manufactured models is most often verified using optical coordinate measuring systems. However, so far, no decision has been taken regarding which type of system would allow for a reliable estimation of the geometrical accuracy of the anatomical models. Three types of optical measurement systems (Atos III Triple Scan, articulated arm (MCA-II) with a laser head (MMD × 100), and Benchtop CT160Xi) were used to verify the accuracy of 12 polymer anatomical models of the left side of the mandible. The models were manufactured using fused deposition modeling (FDM), melted and extruded modeling (MEM), and fused filament fabrication (FFF) techniques. The obtained results indicate that the Atos III Triple Scan allows for the most accurate estimation of errors in model manufacturing. Using the FDM technique obtained the best accuracy in models manufactured (0.008 ± 0.118 mm for ABS0-M30 and 0.016 ± 0.178 mm for PC-10 material). A very similar value of the standard deviation of PLA and PET material was observed (about 0.180 mm). The worst results were observed in the MEM technique (0.012 mm ± 0.308 mm). The knowledge regarding the precisely evaluated errors in manufactured models within the mandibular area will help in the controlled preparation of templates regarding the expected accuracy of surgical operations.

10.
Polymers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069432

RESUMEN

This article focuses on wear tests of spur gears made with the use of additive manufacturing techniques from thermoplastic materials. The following additive manufacturing techniques were employed in this study: Melted and Extruded Modelling (FDM) and Fused Filament Fabrication (FFF). The study analysed gears made from ABS M-30 (Acrylonitrile Butadiene Styrene), ULTEM 9085 (PEI Polyetherimide) and PEEK (Polyetheretherketone), and the selection of these materials reflects their hierarchy in terms of economical application and strength parameters. A test rig designed by the authors was used to determine the fatigue life of polymer gears. Gear trains were tested under load in order to measure wear in polymer gears manufactured using FDM and FFF techniques. In order to understand the mechanism behind gear wear, further tests were performed on a P40 coordinate measuring machine (CMM) and a TalyScan 150 scanning instrument. The results of the gear tests made under load allow us to conclude that PEEK is resistant to wear and gear train operating temperature. Its initial topography undergoes slight changes in comparison to ABS M-30 and Ultem 9085. The biggest wear was reported for gears made from Ultem 9085. The hardness of the material decreased due to the loaded gear train's operating temperature.

11.
Polymers (Basel) ; 13(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805463

RESUMEN

This study examined, the effect of chemically extracted raspberry pomace on the thermal stability, mechanical properties, flammability, chemical structure and processing of poly(vinyl chloride). It was observed that the pomace in this study was used to extract naphtha, thereby permitting the removal of bio-oil as a factor preventing the obtaining of homogeneous composites. Furthermore, adding 20% raspberry pomace filler after extraction extended the thermal stability time for the composites by about 30%. It was observed that composite density, impact strength, and tensile strength values decreased significantly with increasing concentrations of filler in the PVC matrix. At the same time, their modulus of elasticity and Shore hardness increased. All tested composites were characterized by a good burning resistance with a flammability rating of V0 according to the UL94 test. Adding 20 to 40% of a natural filler to the PVC matrix made it possible to obtain composites for the production of flame resistant elements that emitted less hydrogen chloride under fire conditions while ensuring good rigidity.

12.
Materials (Basel) ; 14(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917343

RESUMEN

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3-15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (-87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.

13.
Materials (Basel) ; 14(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923048

RESUMEN

The objective of this publication is to present a quality control methodology for additive manufacturing products made of polymer materials, where the methodology varies depending on the intended use. The models presented in this paper are divided into those that are manufactured for the purpose of visual presentation and those that directly serve the needs of the manufacturing process. The authors also a propose a comprehensive control system for the additive manufacturing process to meet the needs of Industry 4.0. Depending on the intended use of the models, the quality control process is divided into three stages: data control, manufacturing control, and post-processing control. Research models were made from the following materials: RGD 720 photopolymer resin (PolyJet method), ABS M30 thermoplastic (FDM method), E-Partial photopolymer resin (DLP method), PLA thermoplastic (FFF method), and ABS thermoplastic (MEM method). The applied measuring tools had an accuracy of at least an order of magnitude higher than that of the manufacturing technologies used. The results show that the PolyJet method is the most accurate, and the MEM method is the least accurate. The findings also confirm that the selection of materials, 3D printing methods, and measurement methods should always account not only for the specificity and purpose of the model but also for economic aspects, as not all products require high accuracy and durability.

14.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348835

RESUMEN

An important factor having an impact on the condition of machine parts is their surface topography. For instance, in the production of a molded element in casting or injection molding processes, the surface topography of the molding cavity has a significant impact on the surface condition of the product. An analysis of the wear of a mold made with the PolyJet technique was performed in this work, and we examined the surface topography using the stylus method after casting a wax model of the turbine blade. The surface topographies showed a gradual degradation of the mold cavity surface. After the manufacture of 40 castings, there was a significant deformation of the microstructure of the mold cavity. The maximum height value (Sz) parameter had the most dynamic change from 18.980 to 27.920 µm. Its growth dynamics are mainly influenced by maximum peak height (Sp) rather than the maximum pit height (Sv) parameter. In the case of the root mean square height (Sq) and arithmetic mean height (Sa), their gradual increases can be seen from 2.578 to 3.599 µm and from 2.038 to 2.746 µm. In the case of the value of the skewness (Ssk) parameter, a small positive skew was observed. As for the kurtosis (Sku) values, the distributions are clearly leptokurtic.

15.
Polymers (Basel) ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105810

RESUMEN

Nowadays, 3D printing technologies are among the rapidly developing technologies applied to manufacture even the most geometrically complex models, however no techniques dominate in the area of craniofacial applications. This study included 12 different anatomical structures of the mandible, which were obtained during the process of reconstructing data from the Siemens Somatom Sensation Open 40 system. The manufacturing process used for the 12 structures involved the use of 8 3D printers and 12 different polymer materials. Verification of the accuracy and radiological density was performed with the CT160Xi Benchtop tomography system. The most accurate results were obtained in the case of models manufactured using the following materials: E-Model (Standard Deviation (SD) = 0.145 mm), FullCure 830 (SD = 0.188 mm), VeroClear (SD = 0.128 mm), Digital ABS-Ivory (SD = 0.117 mm), and E-Partial (SD = 0.129 mm). In the case of radiological density, ABS-M30 was similar to spongious bone, PC-10 was similar to the liver, and Polylactic acid (PLA) and Polyethylene terephthalate (PET) were similar to the spleen. Acrylic resin materials were able to imitate the pancreas, kidney, brain, and heart. The presented results constitute valuable guidelines that may improve currently used radiological phantoms and may provide support to surgeons in the process of performing more precise treatments within the mandible area.

16.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260304

RESUMEN

This paper relates to the separation of single channel source signals from a single mixed signal by means of independent component analysis (ICA). The proposed idea lies in a time-frequency representation of the mixed signal and the use of ICA on spectral rows corresponding to different time intervals. In our approach, in order to reconstruct true sources, we proposed a novelty idea of grouping statistically independent time-frequency domain (TFD) components of the mixed signal obtained by ICA. The TFD components are grouped by hierarchical clustering and k-mean partitional clustering. The distance between TFD components is measured with the classical Euclidean distance and the ß distance of Gaussian distribution introduced by as. In addition, the TFD components are grouped by minimizing the negentropy of reconstructed constituent signals. The proposed method was used to separate source signals from single audio mixes of two- and three-component signals. The separation was performed using algorithms written by the authors in Matlab. The quality of obtained separation results was evaluated by perceptual tests. The tests showed that the automated separation requires qualitative information about time-frequency characteristics of constituent signals. The best separation results were obtained with the use of the ß distance of Gaussian distribution, a distance measure based on the knowledge of the statistical nature of spectra of original constituent signals of the mixed signal.

17.
Molecules ; 25(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188125

RESUMEN

This paper presents a study on the electrical properties of new polylactide-basednanocomposites with the addition of silicon-dioxide-lignin nanoparticles and glycerine as a plasticizer.Four samples were prepared with nanoparticle mass fractions ranging between 0.01 to 0.15(0.01, 0.05, 0.10, and 0.15), and three samples were prepared without nanoparticle filler-unfilledand unprocessed polylactide, unfilled and processed polylactide, and polylactide with Fusabondand glycerine. All samples were manufactured using the melt mixing extrusion techniqueand injection molding. Only the unfilled and unprocessed PLA sample was directly preparedby injection molding. Dielectric properties were studied with broadband spectroscopy in a frequencyrange from 0.1 Hz to 1 MHz in 55 steps designed on a logarithmic scale and a temperature rangefrom 293.15 to 333.15 K with a 5 K step. Optical properties of nanocomposites were measuredwith UV-VIS spectroscopy at wavelengths from 190 to 1100 nm. The experimental data show thatthe addition of silicon-dioxide-lignin and glycerine significantly affected the electrical propertiesof the studied nanocomposites based on polylactide. Permittivity and electrical conductivity showa significant increase with an increasing concentration of nanoparticle filler. The optical properties arealso affected by nanofiller and cause an increase in absorbance as the number of silicon-dioxide-ligninnanoparticles increase.


Asunto(s)
Electricidad , Lignina/química , Fenómenos Ópticos , Poliésteres/química , Dióxido de Silicio/química , Conductividad Eléctrica , Nanocompuestos/química , Nanocompuestos/ultraestructura
18.
Nanomaterials (Basel) ; 9(7)2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336915

RESUMEN

This paper presents results of experimental investigation into dielectric properties of silicon oxide lignin (SiO2-L) particles dispersed with various mass fractions in ethylene glycol (EG). Measurements were conducted at a controlled temperature, which was changed from 298.15 to 333.15 K with an accuracy of 0.5 and 0.2 K for dielectric properties and direct current (DC) electrical conductivity, respectively. Dielectric properties were measured with a broadband dielectric spectroscopy device in a frequency range from 0.1 to 1 MHz, while DC conductivity was investigated using a conductivity meter MultiLine 3410 working with LR925/01 conductivity probe. Obtained results indicate that addition of even a small amount of SiO2-L nanoparticles to ethylene glycol cause a significant increase in permittivity and alternating current (AC) conductivity as well as DC conductivity, while relaxation time decrease. Additionally, both measurement methods of electrical conductivity are in good agreement.

19.
Australas Phys Eng Sci Med ; 41(3): 687-695, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29978281

RESUMEN

The article presents a comparative study of influence of the Lanczos resampling filter on improving the accuracy of reconstruction of mandible geometries. The research was performed on eight different patients. Digital Imaging and Communications in Medicine data were obtained on the Siemens Somatom Sensation Open 40 scanner. At the stage of reconstruction, the same parameters were utilized, while only slice thickness was changed. Modeling with voxel dimensions of 0.4 mm × 0.4 mm × 1.5 mm was chosen as the gold standard over the modeling approach comprising voxel dimensions of 0.4 mm × 0.4 mm × 3.0 mm and improved using the Lanczos resampling filter. The influence of the Lanczos resampling filter on the accuracy of reconstruction of mandible geometry is very similar for the eight presented patients. The average results show a distribution with a positive skew and kurtosis. The value of skewness is 0.713 and kurtosis is 4.221 for the model without Lanczos filtering applied. When the Lanczos filtering is applied the value of skewness is 0.542 and kurtosis is 4.313. Based on 95% confidence, changes in layer thickness from 1.5 mm to 3 mm generated errors reconstructing the geometry of the mandible at the value of 0.153 mm ± 1.209 mm. In models improved using the Lanczos resampling filter, the errors generated in reconstructing the geometry of the mandible were minimized at the value of 0.160 mm ± 1.007 mm. The presented research highlights new opportunities to improve the accuracy of reconstruction geometry of the mandible at the stage of data processing.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Mandíbula/anatomía & histología , Modelos Anatómicos , Algoritmos , Humanos
20.
Proc Inst Mech Eng H ; 231(3): 197-202, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28112048

RESUMEN

The article presents a comparative study of change in slice thickness on the accuracy of reconstruction of cranium geometry. Research was performed on 10 different patients. Digital Imaging and Communications in Medicine data were obtained on the Siemens Somatom Sensation Open 40 scanner. At the stage of reconstruction, the same parameters were utilized, while only slice thickness was changed. Modeling with voxel dimensions of 0.4 mm × 0.4 mm × 2.4 mm was chosen as the gold standard over the modeling approach comprising voxel dimensions of 0.4 mm × 0.4 mm × 4.8 mm. The influence of layer thickness on the accuracy of cranium geometry is very similar for the 10 presented patients. The average results show a distribution with a positive skew and kurtosis. The value of skewness is 0.284 (small asymmetry) and kurtosis is 3.746 (a distribution more peaked). Based on 95% confidence, the changes in layer thickness from 2.4 to 4.8 mm generated errors reconstructing the geometry of the cranium by 0.516 mm ± 1.345 mm. The presented research highlights new opportunities to control deviations at the stage of data processing and modeling geometry of the cranium.


Asunto(s)
Cráneo/anatomía & histología , Algoritmos , Ingeniería Biomédica , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Anatómicos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...