Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(27): 9984-9995, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37384586

RESUMEN

Low levels of plastics circularity today reflect major challenges for the sector to reduce environmental impacts and a need for wider systemic change. In this work, we investigated the potential for climate and socioeconomic benefits of circular economy (CE) interventions in the plastic packaging system. By means of a mixed-unit input-output (IO) model, we performed a comparative scenario analysis for the development of demand and waste management up to 2030 within the EU-28 (EU27 + United Kingdom). We modeled the development of material flows and assessed the effects of both demand-side and end-of-life interventions. Different levels of ambition toward 2030 based on EU circular economy strategies were tested. Results showed that on reaching high levels of circularity, between 14 and 22 Mt CO2-eq/year could be reduced by 2030 (20-30% of the total sector impact in 2018) compared to business-as-usual. Demand change (e.g., by decreasing product packaging intensities) showed similar emission-saving potential as achieving the current recycling target of 55%, which emphasizes the role of demand-side actions. Most scenarios displayed moderate employment gains and potential economic losses, pertaining to both direct and indirect activity shifts in the economy. While considering model limitations, the approach is useful in indicating potential first-order effects of system changes.


Asunto(s)
Plásticos , Administración de Residuos , Embalaje de Productos , Ambiente , Reino Unido , Reciclaje
2.
Open Res Eur ; 1: 74, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645194

RESUMEN

The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.

3.
Bioresour Technol ; 216: 613-21, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27285577

RESUMEN

The aim of this study was to analyze four conceptual beech wood based biorefineries generated during process design in terms of environmental and economic criteria. Biorefinery 1 annually converts 400,000 dry metric tons of beech wood into the primary products 41,600t/yr polymer-grade ethylene and 58,520tDM/yr organosolv lignin and the fuels 90,800tDM/yr hydrolysis lignin and 38,400t/yr biomethane. Biorefinery 2 is extended by the product of 58,400t/yr liquid "food-grade" carbon dioxide. Biorefinery 3 produces 69,600t/yr anhydrous ethanol instead of ethylene. Compared to biorefinery 3, biorefinery 4 additionally provides carbon dioxide as product. Biorefinery 3 and 4 seem most promising, since under basic assumptions both criteria, (i) economic effectiveness and (ii) reduction of potential environmental impacts, can be fulfilled. All four alternatives may reduce potential environmental impacts compared to reference systems using the ReCiPe methodology. Economic feasibilities of the analyzed biorefineries are highly sensitive.


Asunto(s)
Reactores Biológicos/economía , Madera/economía , Biocombustibles , Dióxido de Carbono/metabolismo , Conservación de los Recursos Energéticos , Etanol/metabolismo , Fagus/química , Hidrólisis , Lignina/química , Madera/química
4.
Bioresour Technol ; 200: 928-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26609950

RESUMEN

Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin.


Asunto(s)
Biocombustibles , Biotecnología/economía , Biotecnología/métodos , Etilenos/biosíntesis , Lignina/biosíntesis , Polímeros/metabolismo , Madera/química , Biomasa , Simulación por Computador , Costos y Análisis de Costo , Fagus/química , Hidrólisis , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA