Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718306

RESUMEN

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Asunto(s)
Criptosporidiosis , Interferón gamma , Mucosa Intestinal , Ratones Noqueados , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Criptosporidiosis/inmunología , Criptosporidiosis/parasitología , Ratones , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Cryptosporidium , Células Epiteliales/parasitología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Enterocitos/parasitología , Enterocitos/metabolismo , Enterocitos/inmunología , Ratones Endogámicos C57BL , Receptor de Interferón gamma , Factor de Transcripción STAT1/metabolismo , Receptores de Interferón/metabolismo , Receptores de Interferón/genética , Transducción de Señal
2.
Mucosal Immunol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508522

RESUMEN

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the major histocompatibility complex-I restricted SIINFEKL epitope which is recognized by T cell receptor transgenic OT-I(OVA-TCR-I) clusters of differentiation (CD)8+ T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8+ T cells that were a source of interferon-gamma (IFN-γ) that could restrict growth of Cryptosporidium. This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (rhoptry protein 1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells, type 1 conventional dendritic cells were required to generate CD8+ T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as potential targets of the immune system and suggest that crosstalk between enterocytes and type 1 conventional dendritic cells is crucial for CD8+ T cell responses to Cryptosporidium.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38152610

RESUMEN

Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT) and animal trypanosomiases, cycles between a bloodstream form in mammals and a procyclic form in the gut of its insect vector. We previously discovered that the human bromodomain inhibitor I-BET151 causes transcriptome changes that resemble the transition from the bloodstream to the procyclic form. In particular, I-BET151 induces replacement of variant surface glycoprotein (VSG) with procyclin protein. While modest binding of I-BET151 to TbBdf2 and TbBdf3 has been demonstrated, it is unknown whether I-BET151 binds to other identified T. brucei bromodomain proteins and/or other targets. To identify target(s) in T. brucei, we have synthesized I-BET151 derivatives maintaining the key pharmacophoric elements with functionality useful for chemoproteomic approaches. We identified compounds that are potent in inducing expression of procyclin, delineating a strategy towards the design of drugs against HAT and other trypanosomiases. Furthermore, these derivatives represent useful chemical probes to elucidate the molecular mechanism underlying I-BET151-induced differentiation.

4.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014210

RESUMEN

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. The use of single cell RNA sequencing to profile IEC during infection revealed induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells, and IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ demonstrated the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ-mediated bystander activation of uninfected enterocytes is important for control of Cryptosporidium.

5.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645924

RESUMEN

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 + T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8 + T cells that were a source of IFN-γ that could restrict growth of Cryptosporidium . This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (ROP1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells (IEC), type I dendritic cells (cDC1) were required to generate CD8 + T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as targets of the immune system and suggest that crosstalk between enterocytes and cDC1s is crucial for CD8 + T cell responses to Cryptosporidium .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...