Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Heliyon ; 10(14): e33739, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108859

RESUMEN

Alveolar macrophages (AM) and monocytes (MO) are myeloid cells that play a substantial role in the development and establishment of the innate and adaptive immune response. These cells are crucial for host defense against various pathogens, but their role in malaria is poorly understood. Here, we characterize the dynamics of AMs and recruited leukocytes subpopulations in the airways during experimental Plasmodium berghei NK65-NY (PbNK65). We show that PbNK65 infection induces an increased pulmonary vascular permeability that provides Ly6Clow MOs, neutrophils (NEU), CD4+ and CD8+ lymphocytes in the airways. This inflammatory environment resulted in an increase in the population and alteration of the activation state of the AMs. Taken together, the data presented provide new insights into airway inflammation associated with pulmonary malaria.

2.
Diagn Microbiol Infect Dis ; 110(1): 116405, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906031

RESUMEN

Parasitic co-infections are common in developing countries and can interfere with leprosy treatment, leading to an increased risk of inflammatory leprosy reactions. This study assessed serum immunoglobulin G (IgG) levels against Toxoplasma gondii and Visceral Leishmaniasis (VL) antigens in 270 leprosy patients from Brazilian states. Regarding the respective cut-offs, the prevalence of IgG seropositivity for T. gondii and VL were 21.05 % and 47.36 % in the leprosy-negative group, and 77.7 % and 52.6 % in the leprosy-positive group. Of the 270 leprosy patients, 158 (58.5 %) presented with inflammatory leprosy reactions. Of those, 72 (59.5 %) had neuritis, 35 (48.6 %) had reverse reactions, and 28 (38.9 %) had ENL in both Brazilian states. Leprosy patients with anti-Leishmania IgG seropositivity were 3.25 times more likely to develop neuritis (95 % C.I.: 1.187 - 9.154; p = 0.019). These findings are particularly relevant for clinical settings where both leprosy and parasitic diseases are prevalent and could provide essential guidance for detecting and addressing complications arising from parasitic co-infections in leprosy patients, thereby improving clinical management strategies.


Asunto(s)
Anticuerpos Antiprotozoarios , Coinfección , Inmunoglobulina G , Leishmania infantum , Leishmaniasis Visceral , Lepra , Toxoplasma , Toxoplasmosis , Humanos , Inmunoglobulina G/sangre , Toxoplasma/inmunología , Coinfección/epidemiología , Coinfección/parasitología , Leishmania infantum/inmunología , Toxoplasmosis/epidemiología , Toxoplasmosis/complicaciones , Femenino , Brasil/epidemiología , Masculino , Anticuerpos Antiprotozoarios/sangre , Estudios Seroepidemiológicos , Adulto , Lepra/epidemiología , Lepra/complicaciones , Persona de Mediana Edad , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/complicaciones , Leishmaniasis Visceral/sangre , Adulto Joven , Adolescente , Anciano , Niño
3.
Parasit Vectors ; 16(1): 461, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115102

RESUMEN

Toxoplasma gondii is an intracellular parasite with a worldwide distribution. Toxoplasma gondii infections are of great concern for public health, and their impact is usually most severe in pregnant women and their foetuses, and in immunocompromised individuals. Displaying considerable genetic diversity, T. gondii strains differ widely according to geographical location, with archetypal strains predominantly found in the Northern Hemisphere and non-archetypal (atypical) strains, with highly diverse genotypes, found mainly in South America. In this review, we present an overview of the identification and distribution of non-archetypal strains of T. gondii. Special attention is paid to the strains that have been isolated in Brazil, their interaction with the host immunological response, and their impact on disease outcomes. The genetic differences among the strains are pivotal to the distinct immunological responses that they elicit. These differences arise from polymorphisms of key proteins released by the parasite, which represent important virulence factors. Infection with divergent non-archetypal strains can lead to unusual manifestations of the disease, even in immunocompetent individuals.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Femenino , Humanos , Embarazo , Animales , Toxoplasmosis/parasitología , Genotipo , Polimorfismo Genético , Brasil/epidemiología , Variación Genética , Toxoplasmosis Animal/parasitología
4.
PLoS Negl Trop Dis ; 17(8): e0011535, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37540724

RESUMEN

Endemic in Brazil, visceral leishmaniasis (VL) is a zoonotic infection that is among the most important parasitic diseases transmitted by vectors. Dogs are the main reservoirs of canine leishmaniasis (CanL) and their identification is used in some countries as part of disease prevention and control measures in the canine and human population. In this context, serological tests are necessary, composed of antigens capable of correctly identifying infected dogs, minimizing the number of false-negative cases. This study aimed to identify more immunoreactive peptides derived from two previously described whole proteins (rDyn-1 and rKDDR-plus) and compare their performance to the control antigens rK39 and the crude extract for the detection of dogs infected with L. infantum, especially the asymptomatic ones. The three selected peptides and a mixture of them, along with the rDyn-1, rKDDR-plus, rK39, and crude extract antigens were evaluated using indirect ELISA with sera samples from 186 dogs with CanL, being asymptomatic (n = 50), symptomatic (n = 50), co-infected (n = 19), infected with Babesia sp. (n = 7), Ehrlichia sp. (n = 6), T. cruzi (n = 20) and uninfected (n = 34). The results showed that the rDyn-1 protein and the peptide mixture had the highest sensitivity (100% and 98.32%, respectively) and specificity (97.01 and 98.51, respectively). A high degree of kappa agreement was found for rDyn-1 protein (0.977), mixed peptides (0.965), rKDDR-plus protein (0.953), K-plus peptide 1 (0.930) and Dyn-1 peptide (0.893). The mixture of peptides showed the highest likelihood (65.87). The ELISA using the mixture of peptides and the rDyn-1 protein showed high performance for CanL serodiagnosis. More mix combinations of the peptides and additional extended field tests with a larger sample size are recommended.


Asunto(s)
Enfermedad de Chagas , Enfermedades de los Perros , Leishmania infantum , Leishmaniasis Visceral , Humanos , Perros , Animales , Antígenos de Protozoos , Sensibilidad y Especificidad , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/epidemiología , Péptidos , Immunoblotting , Oligopéptidos , Ensayo de Inmunoadsorción Enzimática/métodos , Pruebas Serológicas/métodos , Enfermedades de los Perros/epidemiología , Anticuerpos Antiprotozoarios
5.
Vaccine ; 41(37): 5400-5411, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37479612

RESUMEN

Leishmania spp. and Trypanosoma cruzi are parasitic kinetoplastids of great medical and epidemiological importance since they are responsible for thousands of deaths and disability-adjusted life-years annually, especially in low- and middle-income countries. Despite efforts to minimize their impact, current prevention measures have failed to fully control their spread. There are still no vaccines available. Taking into account the genetic similarity within the Class Kinetoplastida, we selected CD8+ T cell epitopes preserved among Leishmania spp. and T. cruzi to construct a multivalent and broad-spectrum chimeric polyprotein vaccine. In addition to inducing specific IgG production, immunization with the vaccine was able to significantly reduce parasite burden in the colon, liver and skin lesions from T. cruzi, L. infantum and L. mexicana challenged mice, respectively. These findings were supported by histopathological analysis, which revealed decreased inflammation in the colon, a reduced number of degenerated hepatocytes and an increased proliferation of connective tissue in the skin lesions of the corresponding T. cruzi, L. infantum and L. mexicana vaccinated and challenged mice. Collectively, our results support the protective effect of a polyprotein vaccine approach and further studies will elucidate the immune profile associated with this protection. Noteworthy, our results act as conceptual proof that a single multi-kinetoplastida vaccine can be used effectively to control different infectious etiologies, which in turn can have a profound impact on the development of a new generation of vaccines.


Asunto(s)
Enfermedad de Chagas , Leishmania , Leishmaniasis , Parásitos , Trypanosoma cruzi , Humanos , Animales , Ratones , Vacunas Combinadas , Leishmaniasis/prevención & control , Enfermedad de Chagas/prevención & control , Proteínas Recombinantes de Fusión
6.
Brain Behav Immun Health ; 30: 100652, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396335

RESUMEN

Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.

7.
Biology (Basel) ; 12(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37372136

RESUMEN

Visceral leishmaniasis (VL) in the Americas is a chronic systemic disease caused by infection with Leishmania infantum parasites. The toxicity of antileishmanial drugs, long treatment course and limited efficacy are significant concerns that hamper adequate treatment against the disease. Studies have shown the promise of an immunotherapeutics approach, combining antileishmanial drugs to reduce the parasitism and vaccine immunogens to activate the host immune system. In the current study, we developed an immunotherapy using a recombinant T cell epitope-based chimeric protein, ChimT, previously shown to be protective against Leishmania infantum, with the adjuvant monophosphoryl lipid A (MPLA) and amphotericin B (AmpB) as the antileishmanial drug. BALB/c mice were infected with L. infantum stationary promastigotes and later they received saline or were treated with AmpB, MPLA, ChimT/Amp, ChimT/MPLA or ChimT/MPLA/AmpB. The combination of ChimT/MPLA/AmpB significantly reduced the parasite load in mouse organs (p < 0.05) and induced a Th1-type immune response, which was characterized by higher ratios of anti-ChimT and anti-parasite IgG2a:IgG1 antibodies, increased IFN-γ mRNA and IFN-γ and IL-12 cytokines and accompanied by lower levels of IL-4 and IL-10 cytokines, when compared to other treatments and controls (all p < 0.05). Organ toxicity was also lower with the ChimT/MPLA/AmpB immunotherapy, suggesting that the inclusion of the vaccine and adjuvant ameliorated the toxicity of AmpB to some degree. In addition, the ChimT vaccine alone stimulated in vitro murine macrophages to significantly kill three different internalized species of Leishmania parasites and to produce Th1-type cytokines into the culture supernatants. To conclude, our data suggest that the combination of ChimT/MPLA/AmpB could be considered for further studies as an immunotherapy for L. infantum infection.

8.
Eur J Med Chem ; 255: 115400, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130472

RESUMEN

Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 µM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 µM. Compounds 7, 8 and 11 showed IC50 values < 5 µM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Naftoquinonas , Chlorocebus aethiops , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Naftoquinonas/química , Células Vero , Triazoles/farmacología , Triazoles/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Plasmodium berghei , Mamíferos
9.
PLoS Negl Trop Dis ; 17(4): e0011229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37027391

RESUMEN

Plasmodium vivax is a major challenge for malaria control due to its wide geographic distribution, high frequency of submicroscopic infections, and ability to induce relapses due to the latent forms present in the liver (hypnozoites). Deepening our knowledge of parasite biology and its molecular components is key to develop new tools for malaria control and elimination. This study aims to investigate and characterize a P. vivax protein (PvVir14) for its role in parasite biology and its interactions with the immune system. We collected sera or plasma from P.vivax-infected subjects in Brazil (n = 121) and Cambodia (n = 55), and from P. falciparum-infected subjects in Mali (n = 28), to assess antibody recognition of PvVir14. Circulating antibodies against PvVir14 appeared in 61% and 34.5% of subjects from Brazil and Cambodia, respectively, versus none (0%) of the P. falciparum-infected subjects from Mali who have no exposure to P. vivax. IgG1 and IgG3 most frequently contributed to anti-PvVir14 responses. PvVir14 antibody levels correlated with those against other well-characterized sporozoite/liver (PvCSP) and blood stage (PvDBP-RII) antigens, which were recognized by 7.6% and 42% of Brazilians, respectively. Concerning the cellular immune profiling of Brazilian subjects, PvVir14 seroreactive individuals displayed significantly higher levels of circulating atypical (CD21- CD27-) B cells, raising the possibility that atypical B cells may be contribute to the PvVir14 antibody response. When analyzed at a single-cell level, the B cell receptor gene hIGHV3-23 was only seen in subjects with active P.vivax infection where it comprised 20% of V gene usage. Among T cells, CD4+ and CD8+ levels differed (lower and higher, respectively) between subjects with versus without antibodies to PvVir14, while NKT cell levels were higher in those without antibodies. Specific B cell subsets, anti-PvVir14 circulating antibodies, and NKT cell levels declined after treatment of P. vivax. This study provides the immunological characterization of PvVir14, a unique P. vivax protein, and possible association with acute host's immune responses, providing new information of specific host-parasite interaction. Trial registration: TrialClinicalTrials.gov Identifier: NCT00663546 & ClinicalTrials.gov NCT02334462.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Humanos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Antígenos de Protozoos , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Malaria Vivax/parasitología , Malaria Falciparum/epidemiología , Brasil/epidemiología , Familia , Inmunoglobulina G , Malí/epidemiología
10.
Cytokine ; 164: 156143, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774730

RESUMEN

Leishmania amazonensis can cause a wide spectrum of the clinical manifestations of leishmaniasis in humans. The development of new therapeutics is a long and expensive task; in this context, drug repositioning could be considered a strategy to identify new biological actions of known products. In the present study, ivermectin (IVE) was tested against distinct Leishmania species able to cause disease in humans. In vitro experiments showed that IVE was effective to reduce the infection degree and parasite load in Leishmania donovani- and L. amazonensis-infected macrophages that were treated with it. In addition, using the culture supernatant of treated macrophages, higher production of IFN-γ and IL-12 and lower levels of IL-4 and IL-10 were found. Then, IVE was used in a pure form or incorporated into Poloxamer 407-based polymeric micelles (IVE/M) for the treatment of L. amazonensis-infected BALB/c mice. Animals (n = 16 per group) were infected and later received saline, empty micelles, amphotericin B (AmpB), IVE, or IVE/M. They were euthanized at one (n = 8 per group) and 30 (n = 8 per group) days after treatment and, in both endpoints, immunological, parasitological, and biochemical evaluations were performed. Results showed that both IVE and IVE/M induced higher levels of IFN-γ, IL-12, GM-CSF, nitrite, and IgG2a antibodies, as well as higher IFN-γ expression evaluated by RT-qPCR in spleen cell cultures. Such animals showed low organic toxicity, as well as significant reductions in the lesion's average diameter and parasite load in their infected tissue, spleen, liver, and draining lymph node. The efficacy was maintained 30 days post-therapy, while control mice developed a polarized Th2-type response and high parasite load. In this context, IVE could be considered as a new candidate to be applied in future studies for the treatment against distinct Leishmania species.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis Visceral , Leishmaniasis , Humanos , Ratones , Animales , Micelas , Ivermectina/farmacología , Ivermectina/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Reposicionamiento de Medicamentos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Interleucina-12/farmacología , Ratones Endogámicos BALB C , Leishmaniasis Visceral/tratamiento farmacológico
11.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36679956

RESUMEN

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

12.
Microbes Infect ; 25(3): 105042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36075515

RESUMEN

Human ascariasis has been characterized as the most prevalent neglected tropical disease worldwide. There is an urgent need for search to alternative prevention and control methods for ascariasis. Here we aimed to establish a protocol of oral immunization with a previously described chimera protein capable of resist through digestion and induce mucous protection against Ascaris suum infection. Mice were oral immunized with seven doses with one day interval and challenged with A. suum ten days after the last dose. In vitro digestion showed that 64% of chimeric protein was bioaccessible for absorption after digestion. Immunized mice display 66,2% reduction of larval burden in lungs compared to control group. In conclusion we demonstrated that oral immunization with chimera protein protects the host against A. suum larval migration leading to less pronounced histopathological lesions.


Asunto(s)
Ascariasis , Ascaris suum , Vacunas , Humanos , Animales , Ratones , Ascariasis/prevención & control , Antígenos Helmínticos/genética , Inmunización , Proteínas Recombinantes de Fusión/genética
13.
Vaccines (Basel) ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36366357

RESUMEN

Leishmaniasis is a widespread vector-borne disease in Brazil, with Leishmania (Leishmania) infantum as the primary etiological agent of visceral leishmaniasis (VL). Dogs are considered the main reservoir of this parasite, whose treatment in Brazil is restricted to the use of veterinary medicines, which do not promote a parasitological cure. Therefore, efficient vaccine development is the best approach to Canine Visceral Leishmaniasis (CVL) control. With this in mind, this study used hamsters (Mesocricetus auratus) as an experimental model in an anti-Leishmania preclinical vaccine trial to evaluate the safety, antigenicity, humoral response, and effects on tissue parasite load. Two novel formulations of nanoparticles made from poly(D, L-lactic) acid (PLA) polymer loading Leishmania braziliensis crude antigen (LB) exhibiting two different particle sizes were utilized: LBPSmG (570 nm) and LBPSmP (388 nm). The results showed that the nanoparticles were safe and harmless to hamsters and were antigenic with the induction in LBSap, LBPSmG, and LBPSmG groups of total anti-Leishmania IgG antibodies 30 days after challenge, which persists 200 days in LBSap and LBPSmP. At the same time, a less pronounced hepatosplenomegaly in LBSap, LBPSmG, and LBPSmP was found when compared to control groups, as well as a less pronounced inflammatory infiltrate and granuloma formation in the spleen. Furthermore, significant reductions of 84%, 81%, and 90% were observed in spleen parasite burden accessed by qPCR in the LBSap, LBPSmG, and LBPSmP groups, respectively. In this way, LBSap, LBPSmG, and LBPSmP formulations showed better results in vaccinated and L. infantum-challenged animals in further reducing parasitic load in the spleen and attenuating lesions in liver and splenic tissues. This results in safe, harmless nanoformulation vaccines with significant immunogenic and infection control potential. In addition, animals vaccinated with LBPSmP had an overall reduction in parasite burden in the spleen, indicating that a smaller nanoparticle could be more efficient in targeting antigen-presenting cells.

14.
mBio ; 13(6): e0231922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264102

RESUMEN

Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Animales , Ratones , Trypanosoma cruzi/genética , Variaciones en el Número de Copia de ADN , Genoma de Protozoos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Familia de Multigenes , Enfermedad de Chagas/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamíferos/genética
15.
Trop Med Infect Dis ; 7(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36288055

RESUMEN

Five species of Plasmodium cause malaria in humans and two of them, P. vivax and P. falciparum, pose the greatest threat. Rapid antigen detection tests (RADT) have been used for many years to diagnose and distinguish malaria caused by these two parasites. P. falciparum malaria can single-handedly be diagnosed using an RADT, which detects the unique P. falciparum specific histidine-rich protein 2 (HRP2). Unfortunately, there is no RADT that can single-handedly diagnose P. vivax malaria because no specific marker of this parasite has yet been described. Here, we report the discovery of a unique P. vivax protein (Vir14, NCBI Reference Sequence: XP_001612449.1) that has no sequence similarity with proteins of P. falciparum and no significant similarities with proteins of other species of Plasmodium. We propose that this protein could be an outstanding candidate molecule for the development of a promising RADT that can single-handedly and specifically diagnose P. vivax malaria.

16.
Immunol Lett ; 249: 12-22, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002066

RESUMEN

Immunoglobulin-A (IgA) is an important mediator of immunity and has been associated with protection against several pathogens, although its role in gastrointestinal infections remains unclear. Then, the aim of this systematic review was to synthesize qualitative evidence in respect of IgA as mediator of protective immunity against gastrointestinal helminths. Following recommended guidelines, we searched for articles published between January 1990 and October 2019 that evaluated IgA levels and their association with gastrointestinal helminth infections. Twenty-five articles were included after screening 1,546 titles and abstracts, as well as reading in full 52 selected articles. Consistent associations between higher IgA levels and lower parasitological parameters were only found in mice, rats, and sheep. However, the role of IgA in other host species remains uncertain, making it difficult to create a consensus. Therefore, it is too soon to claim that IgA is an effective protective factor against gastrointestinal helminths, and further studies are still needed.


Asunto(s)
Helmintiasis , Inmunoglobulina A , Animales , Helmintiasis/parasitología , Ratones , Ratas , Ovinos
17.
Front Immunol ; 13: 864632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844540

RESUMEN

IL-17 is a cytokine produced by innate and acquired immunity cells that have an action against fungi and bacteria. However, its action in helminth infections is unclear, including in Toxocara canis infection. Toxocariasis is a neglected zoonosis representing a significant public health problem with an estimated seroprevalence of 19% worldwide. In the present study, we describe the immunopathological action of IL-17RA in acute T. canis infection. C57BL/6j (WT) and IL-17RA receptor knockout (IL-17RA-/-) mice were infected with 1000 T. canis eggs. Mice were evaluated 3 days post-infection for parasite load and white blood cell count. Lung tissue was harvested for histopathology and cytokine expression. In addition, we performed multiparametric flow cytometry in the BAL and peripheral blood, evaluating phenotypic and functional changes in myeloid and lymphoid populations. We showed that IL-17RA is essential to control larvae load in the lung; however, IL-17RA contributed to pulmonary inflammation, inducing inflammatory nodular aggregates formation and presented higher pulmonary IL-6 levels. The absence of IL-17RA was associated with a higher frequency of neutrophils as a source of IL-4 in BAL, while in the presence of IL-17RA, mice display a higher frequency of alveolar macrophages expressing the same cytokine. Taken together, this study indicates that neutrophils may be an important source of IL-4 in the lungs during T. canis infection. Furthermore, IL-17/IL-17RA axis is important to control parasite load, however, its presence triggers lung inflammation that can lead to tissue damage.


Asunto(s)
Neumonía , Receptores de Interleucina-17 , Toxocara canis , Toxocariasis , Animales , Citocinas/inmunología , Interleucina-17/inmunología , Interleucina-4/inmunología , Ratones , Ratones Endogámicos C57BL , Neumonía/inmunología , Neumonía/parasitología , Receptores de Interleucina-17/inmunología , Toxocara canis/inmunología , Toxocariasis/inmunología , Toxocariasis/parasitología
18.
Exp Parasitol ; 238: 108267, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35550886

RESUMEN

BACKGROUND: Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES: Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS: In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS: The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS: We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.


Asunto(s)
Ascariasis , Ascaris suum , Parásitos , Animales , Ascariasis/parasitología , Citocinas , Inflamación , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico
19.
Microbes Infect ; 24(6-7): 104981, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35462022

RESUMEN

Leprosy is an infectious disease influenced by genetic, immunological, and environmental factors. Reduced gene expressions may be associated with the immunological response pattern and leprosy susceptibility. We investigated the direct and indirect effects of Vitamin D Receptor (VDR) and Cathelicidin Antimicrobial Peptide (CAMP) gene expressions on the serum levels of vitamin D, Cathelicidin, and cytokines in newly-diagnosed leprosy patients and post-six-months of multidrug therapy (MDT). Thirty-four leprosy patients were assessed, paucibacillary (PB; n = 14) and multibacillary (MB; n = 20) cases, untreated or having received six months of MDT, 18 healthy controls, and 25 household contacts. VDR and CAMP gene expression levels were strongly correlated to some important cytokines in both, untreated leprosy patients (PB, r = 0.9319; MB, r = 0.9569) and patients who had undergone MDT (PB, r = 0.9667; MB, r = 0.9569). We observed that both gene expressions directly influenced IL-2, IFN-γ, and IL-17F serum levels in leprosy patients compared to the household contacts and healthy individuals. VDR and CAMP gene expressions induced a persistent inflammatory response in PB and MB leprosy patients, even after six months of MDT, to fight the Mycobacterium leprae infection. Due to the persistent inflammatory profile, multidrug therapy is suggested to be maintained for more than six months, especially for MB patients. Vitamin D supplementation is recommended from the onset as a transcription factor to improve VDR and CAMP gene expression in leprosy patients.


Asunto(s)
Lepra , Receptores de Calcitriol , Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Citocinas/genética , Quimioterapia Combinada , Expresión Génica , Humanos , Inmunidad , Interleucina-17/genética , Interleucina-2/uso terapéutico , Leprostáticos/uso terapéutico , Lepra/tratamiento farmacológico , Mycobacterium leprae , Receptores de Calcitriol/genética , Factores de Transcripción/genética , Vitamina D , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA