Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Cell Dev Biol ; 12: 1356566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444827

RESUMEN

The cAMP-dependent protein kinase (PKA) is one of the most extensively distributed kinases among intracellular signal cascades, with a pivotal role in the regulation of various processes, including the capacitation of sperm cells. Traditional assessments of PKA activity relies on the utilization of [γ-32P] ATP and the Kemptide substrate. This methodology presents several major drawbacks, including high-costs and health risks derived from the manipulation of radioactive isotopes. In this work we introduce an enhanced non-radioactive assay for quantifying PKA activity, termed KiMSA which relies on the use of a fluorescent-labeled Kemptide (Kemptide-FITC). Once the kinase reaction is terminated, the products can be easily resolved through electrophoresis on an agarose gel and quantified by fluorescence densitometry. We show that the KiMSA assay is suitable for purified PKA, and also to address both basal and capacitation induced PKA activity in mouse sperm cells. Furthermore, the assay enables monitoring the inhibition of PKA with inhibitors such as sPKI and H-89 in live cells. Therefore, the experimental and optimal assay conditions are set so that the KiMSA assay can be used to either assess in vitro as well as in vivo PKA activity in sperm cells. Finally, this method allows for measurement of cAMP concentrations, rendering a versatile technique for the study of cAMP/PKA pathways.

2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496535

RESUMEN

Sperm capacitation, crucial for fertilization, occurs in the female reproductive tract and can be replicated in vitro using a medium rich in bicarbonate, calcium, and albumin. These components trigger the cAMP-PKA signaling cascade, proposed to promote hyperpolarization of the mouse sperm plasma membrane through activation of SLO3 K+ channel. Hyperpolarization is a hallmark of capacitation: proper membrane hyperpolarization renders higher in vitro fertilizing ability, while Slo3 KO mice are infertile. However, the precise regulation of SLO3 opening remains elusive. Our study challenges the involvement of PKA in this event and reveals the role of Na+/H+ exchangers. During capacitation, calcium increase through CatSper channels activates NHE1, while cAMP directly stimulates the sperm-specific NHE, collectively promoting the alkalinization threshold needed for SLO3 opening. Hyperpolarization then feeds back Na+/H+ activity. Our work is supported by pharmacology, and a plethora of KO mouse models, and proposes a novel pathway leading to hyperpolarization.

3.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37904966

RESUMEN

Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Although midpiece contraction may occur in a subset of cells that undergo acrosomal exocytosis, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement: In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.

4.
J Physiol ; 601(14): 2935-2958, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37278367

RESUMEN

The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-ß-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.


Asunto(s)
Calcio , Semen , Masculino , Animales , Ratones , Calcio/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Acrosoma/metabolismo , Mibefradil/metabolismo , Mibefradil/farmacología , Concentración de Iones de Hidrógeno , Mamíferos/metabolismo
5.
Front Cell Dev Biol ; 11: 1010306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743410

RESUMEN

The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.

6.
Nat Commun ; 13(1): 7452, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460648

RESUMEN

The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


Asunto(s)
Algoritmos , Medicamentos Genéricos , Sistemas de Lectura , Microscopía Fluorescente , Colorantes Fluorescentes
7.
J Biol Chem ; 298(6): 101988, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35487245

RESUMEN

The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.


Asunto(s)
Factores Despolimerizantes de la Actina , Capacitación Espermática , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Cofilina 1/metabolismo , Exocitosis , Masculino , Mamíferos/metabolismo , Ratones , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Fosforilación , Semen/metabolismo
8.
Front Cell Dev Biol ; 9: 777086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869380

RESUMEN

To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.

9.
Mol Hum Reprod ; 27(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34792600

RESUMEN

EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.


Asunto(s)
Anticuerpos/farmacología , Anticonceptivos Masculinos/farmacología , Diseño de Fármacos , Proteínas Inhibidoras de Proteinasas Secretoras/antagonistas & inhibidores , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Sitios de Unión , Fenómenos Biomecánicos , Epítopos , Femenino , Ligandos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Inhibidoras de Proteinasas Secretoras/química , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Espermatozoides/metabolismo , Tirosina
11.
Biosystems ; 209: 104524, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34453988

RESUMEN

Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.


Asunto(s)
Reacción Acrosómica/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Canales de Calcio/metabolismo , Humanos , Masculino , Modelos Biológicos , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/fisiología , Espermatozoides/metabolismo
12.
FASEB J ; 35(8): e21723, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224609

RESUMEN

Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.


Asunto(s)
Canales de Calcio/metabolismo , Espermatozoides/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Señalización del Calcio , AMP Cíclico/metabolismo , Femenino , Fertilización In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Transducción de Señal , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Proteína de Unión al GTP cdc42/antagonistas & inhibidores
13.
FASEB J ; 35(6): e21478, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33991146

RESUMEN

Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.


Asunto(s)
Reacción Acrosómica , Señalización del Calcio , Exocitosis , Potenciales de la Membrana , Capacitación Espermática , Espermatozoides/fisiología , Humanos , Masculino , Fosforilación
14.
Mol Reprod Dev ; 87(12): 1188-1198, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33118273

RESUMEN

Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.


Asunto(s)
Reacción Acrosómica/fisiología , Acrosoma/metabolismo , Exocitosis/fisiología , Fertilización In Vitro/métodos , Capacitación Espermática/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Zona Pelúcida/metabolismo
15.
Mol Cell Endocrinol ; 518: 110992, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853743

RESUMEN

The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Capacitación Espermática/fisiología , Reacción Acrosómica/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Masculino , Mamíferos , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Espermatozoides/metabolismo
16.
Development ; 147(8)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32265198

RESUMEN

Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1-/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1-/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1-/- cerebral cortex. In addition, Klc1-/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.


Asunto(s)
Transporte Axonal , Axones/metabolismo , Cannabinoides/metabolismo , Cinesinas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Axones/ultraestructura , Corteza Cerebral/metabolismo , Eliminación de Gen , Conos de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Subunidades de Proteína/metabolismo , Tálamo/metabolismo
17.
Reproduction ; 159(4): 423-436, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31967971

RESUMEN

Sperm chemotaxis may facilitate the finding of the oocyte. Only capacitated spermatozoa can orient their movement by chemotaxis, which as well as capacitation, is regulated in part by the cAMP-PKA pathway. Reactive oxygen species (ROS) are produced during sperm capacitation which is closely related to chemotaxis. Then, the ROS participation in the chemotactic signaling can be expected. Here we studied the role of ROS in the chemotaxis signaling of equine spermatozoa which produce high quantities of ROS because of their energy metabolism. The level of capacitated and chemotactic spermatozoa was increased with 0.1 and 0.2 mM hydrogen peroxide (H2O2), which was involved in the chemotactic signaling. By combining a concentration gradient of H2O2 with inhibitors/chelators of some of the signaling pathway elements, we showed that the activation of NOX (membrane NADPH oxidase) increases the intracellular ROS which activate the chemotaxis AMPc-PKA pathway. Our results provide evidence about the participation of ROS in the chemotactic signaling mediated by progesterone (P).


Asunto(s)
Quimiotaxis , Caballos/metabolismo , Especies Reactivas de Oxígeno , Capacitación Espermática , Espermatozoides/metabolismo , Animales , Masculino
18.
Front Cell Dev Biol ; 7: 262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31750304

RESUMEN

To become fertile, mammalian sperm must undergo a series of biochemical and physiological changes known as capacitation. These changes involve crosstalk between metabolic and signaling pathways and can be recapitulated in vitro. In this work, sperm were incubated in the absence of exogenous nutrients (starved) until they were no longer able to move. Once immotile, energy substrates were added back to the media and sperm motility was rescued. Following rescue, a significantly higher percentage of starved sperm attained hyperactivated motility and displayed increased ability to fertilize in vitro when compared with sperm persistently incubated in standard capacitation media. Remarkably, the effects of this treatment continue beyond fertilization as starved and rescued sperm promoted higher rates of embryo development, and once transferred to pseudo-pregnant females, blastocysts derived from treated sperm produced significantly more pups. In addition, the starvation and rescue protocol increased fertilization and embryo development rates in sperm from a severely sub-fertile mouse model, and when combined with temporal increase in Ca2+ ion levels, this methodology significantly improved fertilization and embryo development rates in sperm of sterile CatSper1 KO mice model. Intracytoplasmic sperm injection (ICSI) does not work in the agriculturally relevant bovine system. Here, we show that transient nutrient starvation of bovine sperm significantly enhanced ICSI success in this species. These data reveal that the conditions under which sperm are treated impact post-fertilization development and suggest that this "starvation and rescue method" can be used to improve assisted reproductive technologies (ARTs) in other mammalian species, including humans.

19.
Front Cell Dev Biol ; 7: 101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31245370

RESUMEN

Mammalian sperm must undergo a complex process called capacitation in order to fertilize the egg. During this process, hyperpolarization of the sperm plasma membrane has been mostly studied in mouse, and associated to its importance in the preparation to undergo the acrosome reaction (AR). However, despite the increasing evidence of membrane hyperpolarization in human sperm capacitation, no reliable techniques have been set up for its determination. In this report we describe human sperm membrane potential (Em) measurements by a fluorimetric population assay, establishing optimal conditions for Em determination. In addition, we have conducted parallel measurements of the same human sperm samples by flow cytometry and population fluorimetry, before and after capacitation, to conclusively address their reliability. This integrative analysis sets the basis for the study of Em in human sperm allowing future work aiming to understand its role in human sperm capacitation.

20.
Prog Biophys Mol Biol ; 145: 10-18, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30500339

RESUMEN

It is known that LLLT has beneficial effects on several pathological conditions including wound healing, pain and inflammation. LLLT modulates biological processes, including cell proliferation, apoptosis and angiogenesis. In the present study, we examined the effect of local application of LLLT on follicular dynamics, ovarian reserve, AMH expression, progesterone levels, apoptosis, angiogenesis, and reproductive outcome in adult mice. LLLT (200 J/cm2) increased the percentage of primary and preantral follicles, whilst decreasing the percentage of corpora lutea compared to control ovaries. LLLT-treated ovaries did not exhibit any changes regarding the number of primordial follicles. We observed a higher percentage of AMH-positive follicles (in early stages of development) in LLLT-treated ovaries compared to control ovaries. LLLT reduced the P4 concentration and the apoptosis in early antral follicles compared to control ones. LLLT caused a reduction in the endothelial cell area and an increase in the periendothelial cell area in the ovary. Additionally, LLLT was able to improve oocyte quality. Our findings suggest that local application of LLLT modulates follicular dynamics by regulating apoptosis and the vascular stability in mouse ovary. In conclusion, these data indicate that LLLT might become a novel and useful tool in the treatment of several pathologies, including female reproductive disorders.


Asunto(s)
Hormona Antimülleriana/biosíntesis , Apoptosis/efectos de la radiación , Terapia por Luz de Baja Intensidad , Neovascularización Fisiológica/efectos de la radiación , Ovario/efectos de la radiación , Animales , Línea Celular , Proliferación Celular/efectos de la radiación , Cuerpo Lúteo/efectos de la radiación , Femenino , Fertilización In Vitro/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Folículo Ovárico/citología , Folículo Ovárico/efectos de la radiación , Ovario/irrigación sanguínea , Ovario/citología , Ovario/metabolismo , Progesterona/biosíntesis , Superovulación/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...