Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-19687140

RESUMEN

Multiple origins of the same polyploid species pose the question: Does evolution repeat itself in these independently formed lineages? Tragopogon is a unique evolutionary model for the study of recent and recurrent allopolyploidy. The allotetraploids T. mirus (T. dubius x T. porrifolius) and T. miscellus (T. dubius x T. pratensis) formed repeatedly following the introduction of three diploids to the United States. Concerted evolution has consistently occurred in the same direction (resulting in loss of T. dubius rDNA copies). Both allotetraploids exhibit homeolog loss, with the same genes consistently showing loss, and homeologs of T. dubius preferentially lost in both allotetraploids. We have also documented repeated patterns of tissue-specific silencing in multiple populations of T. miscellus. Hence, some aspects of genome evolution may be "hardwired," although the general pattern of loss is stochastic within any given population. On the basis of the study of F(1) hybrids and synthetics, duplicate gene loss and silencing do not occur immediately following hybridization or polyploidization, but gradually and haphazardly. Genomic approaches permit analysis of hundreds of loci to assess the frequency of homeolog loss and changes in gene expression. This methodology is particularly promising for groups such as Tragopogon for which limited genetic and genomic resources are available.


Asunto(s)
Evolución Biológica , Especiación Genética , Poliploidía , ADN de Plantas/genética , ADN Ribosómico/genética , Diploidia , Evolución Molecular , Silenciador del Gen , Genoma de Planta , Genómica , Hibridación Genética , Modelos Genéticos , Tragopogon/clasificación , Tragopogon/genética , Estados Unidos
3.
Heredity (Edinb) ; 103(1): 73-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19277058

RESUMEN

Whole-genome duplication (polyploidisation) is a widespread mechanism of speciation in plants. Over time, polyploid genomes tend towards a more diploid-like state, through downsizing and loss of duplicated genes (homoeologues), but relatively little is known about the timing of gene loss during polyploid formation and stabilisation. Several studies have also shown gene transcription to be affected by polyploidisation. Here, we examine patterns of gene loss in 10 sets of homoeologues in five natural populations of the allotetraploid Tragopogon miscellus that arose within the past 80 years following independent whole-genome duplication events. We also examine 44 first-generation synthetic allopolyploids of the same species. No cases of homoeologue loss arose in the first allopolyploid generation, but after 80 years, 1.6% of homoeologues were lost in natural populations. For seven homoeologue sets we also examined transcription, finding that 3.4% of retained homoeologues had been silenced in the natural populations, but none in the synthetic plants. The homoeologue losses and silencing events found were not fixed within natural populations and did not form a predictable pattern among populations. We therefore show haphazard loss and silencing of homoeologues, occurring within decades of polyploid formation in T. miscellus, but not in the initial generation.


Asunto(s)
Eliminación de Gen , Silenciador del Gen , Poliploidía , Tragopogon/genética , Genes Sintéticos , Genoma de Planta , Datos de Secuencia Molecular
4.
Heredity (Edinb) ; 99(3): 301-12, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17611495

RESUMEN

Hybrid zones are 'natural laboratories' for studying the origin, maintenance and demise of species. Theory predicts that hybrid zones can move in space and time, with significant consequences for both evolutionary and conservation biology, though such movement is often perceived as rare. Here, a review of empirical studies of moving hybrid zones in animals and plants shows 23 examples with observational evidence for movement, and a further 16 where patterns of introgression in molecular markers could be interpreted as signatures of movement. The strengths and weaknesses of methods used for detecting hybrid zone movement are discussed, including long-term replicated sampling, historical surveys, museum/herbarium collections, patterns of relictual populations and introgression of genetic markers into an advancing taxon. Factors governing hybrid zone movement are assessed in the light of the empirical studies, including environmental selection, competition, asymmetric hybridization, dominance drive, hybrid fitness, human activity and climate change. Hybrid zone movement means that untested assumptions of stability in evolutionary studies on hybrid zone can lead to mistaken conclusions. Movement also means that conservation effort aimed at protecting against introgression could unwittingly favour an invading taxon. Moving hybrid zones are of wide interest as examples of evolution in action and possible indicators of environmental change. More long-term experimental studies are needed that incorporate reciprocal transplants, hybridization experiments and surveys of molecular markers and population densities on a range of scales.


Asunto(s)
Quimera/genética , Gryllidae/genética , Plantas/genética , Tics/genética , Urodelos/genética , Animales , Cruzamientos Genéticos , Marcadores Genéticos , Genética de Población , Densidad de Población , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA