Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 11(1): 9979, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976255

RESUMEN

Extensive studies have highlighted a need for frequently consistent land cover information for interdisciplinary studies. This paper proposes a comprehensive framework for the automatic production of the first Vietnam-wide annual land use/land cover (LULC) data sets (VLUCDs) from 1990 to 2020, using available remotely sensed and inventory data. Classification accuracies ranged from 85.7 ± 1.3 to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1% with the secondary dominant LULC. This confirmed the potential of the proposed framework for systematically long-term monitoring LULC in Vietnam. Results reveal that despite slight recoveries in 2000 and 2010, the net loss of forests (19,940 km2) mainly transformed to croplands over 30 years. Meanwhile, productive croplands were converted to urban areas, which increased approximately ten times. A threefold increase in aquaculture was a major driver of the wetland loss (1914 km2). The spatial-temporal changes varied, but the most dynamic regions were the western north, the southern centre, and the south. These findings can provide evidence-based information on formulating and implementing coherent land management policies. The explicitly spatio-temporal VLUCDs can be benchmarks for global LULC validation, and utilized for a variety of applications in the research of environmental changes towards the Sustainable Development Goals.

3.
J Environ Manage ; 280: 111858, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360552

RESUMEN

Flash flood is one of the most dangerous hydrologic and natural phenomena and is considered as the top ranking of such events among various natural disasters due to their fast onset characteristics and the proportion of individual fatalities. Mapping the probability of flash flood events remains challenges because of its complexity and rapid onset of precipitation. Thus, this study aims to propose a state-of-the-art data mining approach based on a hybrid equilibrium optimized SysFor, namely, the HE-SysFor model, for spatial prediction of flash floods. A tropical storm region located in the Northwest areas of Vietnam is selected as a case study. For this purpose, 1866 flash-flooded locations and ten indicators were used. The results show that the proposed HE-SysFor model yielded the highest predictive performance (total accuracy = 93.8%, Kappa index = 0.875, F1-score = 0.939, and AUC = 0.975) and produced the better performance than those of the C4.5 decision tree (C4.5), the radial basis function-based support vector machine (SVM-RBF), the logistic regression (LReg), and deep learning neural network (DeepLNN) models in both the training and the testing phases. Among the ten indicators, elevation, slope, and land cover are the most important. It is concluded that the proposed model provides an alternative tool and may help for effectively monitoring flash floods in tropical areas and robust policies for decision making in mitigating the flash flood impacts.


Asunto(s)
Tormentas Ciclónicas , Inundaciones , Minería de Datos , Ríos , Vietnam
4.
Sci Total Environ ; 750: 141565, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882492

RESUMEN

This study is an attempt to quantitatively test and compare novel advanced-machine learning algorithms in terms of their performance in achieving the goal of predicting flood susceptible areas in a low altitudinal range, sub-tropical floodplain environmental setting, like that prevailing in the Middle Ganga Plain (MGP), India. This part of the Ganga floodplain region, which under the influence of undergoing active tectonic regime related subsidence, is the hotbed of annual flood disaster. This makes the region one of the best natural laboratories to test the flood susceptibility models for establishing a universalization of such models in low relief highly flood prone areas. Based on highly sophisticated flood inventory archived for this region, and 12 flood conditioning factors viz. annual rainfall, soil type, stream density, distance from stream, distance from road, Topographic Wetness Index (TWI), altitude, slope aspect, slope, curvature, land use/land cover, and geomorphology, an advanced novel hybrid model Adaptive Neuro Fuzzy Inference System (ANFIS), and three metaheuristic models-based ensembles with ANFIS namely ANFIS-GA (Genetic Algorithm), ANFIS-DE (Differential Evolution), and ANFIS-PSO (Particle Swarm Optimization), have been applied for zonation of the flood susceptible areas. The flood inventory dataset, prepared by collected flood samples, were apportioned into 70:30 classes to prepare training and validation datasets. One independent validation method, the Area-Under Receiver Operating Characteristic (AUROC) Curve, and other 11 cut-off-dependent model evaluation metrices have helped to conclude that the ANIFS-GA has outperformed other three models with highest success rate AUC = 0.922 and prediction rate AUC = 0.924. The accuracy was also found to be highest for ANFIS-GA during training (0.886) & validation (0.883). Better performance of ANIFS-GA than the individual models as well as some ensemble models suggests and warrants further study in this topoclimatic environment using other classes of susceptibility models. This will further help establishing a benchmark model with capability of highest accuracy and sensitivity performance in the similar topographic and climatic setting taking assumption of the quality of input parameters as constant.

5.
Sci Rep ; 10(1): 20494, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235269

RESUMEN

Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 advanced regression-based machine learning methods: Robust linear regression (RLR), Cforest, Non-convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), Monotone multi-layer perception neural network (MMLPNN), Ridge regression (RR), Boosting generalized linear model (BGLM), Negative binomial generalized linear model (NBGLM), Boosting generalized additive model (BGAM), Spline generalized additive model (SGAM), Spike and slab regression (SSR), Stochastic gradient boosting (SGB), support vector machine (SVM), Relevance vector machine (RVM) and the Cubist and Adaptive network-based fuzzy inference system (ANFIS). Thirteen factors controlling wind erosion were mapped, and multicollinearity among these factors was quantified using the tolerance coefficient (TC) and variance inflation factor (VIF). Model performance was assessed by RMSE, MAE, MBE, and a Taylor diagram using both training and validation datasets. The result showed that five models (MMLPNN, SGAM, Cforest, BGAM and SGB) are capable of delivering a high prediction accuracy for land susceptibility to wind erosion hazard. DEM, precipitation, and vegetation (NDVI) are the most critical factors controlling wind erosion in the study area. Overall, regression-based machine learning models are efficient techniques for mapping land susceptibility to wind erosion hazards.

6.
J Environ Manage ; 260: 109867, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090793

RESUMEN

Forests are important dynamic systems which are widely affected by fire worldwide. Due to the complexity and non-linearity of the forest fire problem, employing hybrid evolutionary algorithms is a logical task to achieve a reliable approximation of this environmental threat. Three fuzzy-metaheuristic ensembles, based on adaptive neuro-fuzzy inference systems (ANFIS) incorporated with genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE) evolutionary algorithms are used to produce the forest fire susceptibility map (FFSM) of a fire-prone region in Iran. A sensitivity analysis is also executed to evaluate the effectiveness of the proposed ensembles in terms of time and complexity. The results revealed that all models produce FFSMs with acceptable accuracy. However, the superiority of the GA-ANFIS was shown in both recognizing the pattern (AUROCtrain = 0.912 and Error = 0.1277) and predicting unseen fire events (AUROCtest = 0.850 and Error = 0.1638). The optimized structures of the proposed GA-ANFIS and PSO-ANFIS ensembles could be good alternatives to traditional forest fire predictive models, and their FFSMs can be promisingly used for future planning and decision making in the proposed area.


Asunto(s)
Incendios Forestales , Algoritmos , Lógica Difusa , Irán
7.
Sci Total Environ ; 715: 136836, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007881

RESUMEN

Groundwater resources constitute the main source of clean fresh water for domestic use and it is essential for food production in the agricultural sector. Groundwater has a vital role for water supply in the Campanian Plain in Italy and hence a future sustainability of the resource is essential for the region. In the current paper novel data mining algorithms including Gaussian Process (GP) were used in a large groundwater quality database to predict nitrate (contaminant) and strontium (potential future increasing) concentrations in groundwater. The results were compared with M5P, random forest (RF) and random tree (RT) algorithms as a benchmark to test the robustness of the modeling process. The dataset includes 246 groundwater quality samples originating from different wells, municipals and agricultural. It was divided for the modeling process into two subgroups by using the 10-fold cross validation technique including 173 samples for model building (training dataset) and 73 samples for model validation (testing dataset). Different water quality variables including T, pH, EC, HCO3-, F-, Cl-, SO42-, Na+, K+, Mg2+, and Ca2+ have been used as an input to the models. At first stage, different input combinations have been constructed based on correlation coefficient and thus the optimal combination was chosen for the modeling phase. Different quantitative criteria alongside with visual comparison approach have been used for evaluating the modeling capability. Results revealed that to obtain reliable results also variables with low correlation should be considered as an input to the models together with those variables showing high correlation coefficients. According to the model evaluation criteria, GP algorithm outperforms all the other models in predicting both nitrate and strontium concentrations followed by RF, M5P and RT, respectively. Result also revealed that model's structure together with the accuracy and structure of the data can have a relevant impact on the model's results.

8.
Sensors (Basel) ; 20(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936038

RESUMEN

Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive models to avoid losses caused by gully development and to guarantee sustainable development. This research investigates the predictive performance of seven multiple-criteria decision-making (MCDM), statistical, and machine learning (ML)-based models and their ensembles for gully erosion susceptibility mapping (GESM). A case study of the Dasjard River watershed, Iran uses a database of 306 gully head cuts and 15 conditioning factors. The database was divided 70:30 to train and verify the models. Their performance was assessed with the area under prediction rate curve (AUPRC), the area under success rate curve (AUSRC), accuracy, and kappa. Results show that slope is key to gully formation. The maximum entropy (ME) ML model has the best performance (AUSRC = 0.947, AUPRC = 0.948, accuracy = 0.849 and kappa = 0.699). The second best is the random forest (RF) model (AUSRC = 0.965, AUPRC = 0.932, accuracy = 0.812 and kappa = 0.624). By contrast, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model was the least effective (AUSRC = 0.871, AUPRC = 0.867, accuracy = 0.758 and kappa = 0.516). RF increased the performance of statistical index (SI) and frequency ratio (FR) statistical models. Furthermore, the combination of a generalized linear model (GLM), and functional data analysis (FDA) improved their performances. The results demonstrate that a combination of geographic information systems (GIS) with remote sensing (RS)-based ML models can successfully map gully erosion susceptibility, particularly in low-income and developing regions. This method can aid the analyses and decisions of natural resources managers and local planners to reduce damages by focusing attention and resources on areas prone to the worst and most damaging gully erosion.

9.
Sci Total Environ ; 699: 134230, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31522053

RESUMEN

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.

10.
Sensors (Basel) ; 19(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426552

RESUMEN

In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors-elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall-is prepared to develop the ANN and HHO-ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO-ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO-ANN = 0.773) the landslide pattern.

11.
J Environ Manage ; 243: 358-369, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103681

RESUMEN

In the terrestrial ecosystems, perennial challenges of increased frequency and intensity of wildfires are exacerbated by climate change and unplanned human activities. Development of robust management and suppression plans requires accurate estimates of future burn probabilities. This study describes the development and validation of two hybrid intelligence predictive models that rely on an adaptive neuro-fuzzy inference system (ANFIS) and two metaheuristic optimization algorithms, i.e., genetic algorithm (GA) and firefly algorithm (FA), for the spatially explicit prediction of wildfire probabilities. A suite of ten explanatory variables (altitude, slope, aspect, land use, rainfall, soil order, temperature, wind effect, and distance to roads and human settlements) was investigated and a spatial database constructed using 32 fire events from the Zagros ecoregion (Iran). The frequency ratio model was used to assign weights to each class of variables that depended on the strength of the spatial association between each class and the probability of wildfire occurrence. The weights were then used for training the ANFIS-GA and ANFIS-FA hybrid models. The models were validated using the ROC-AUC method that indicated that the ANFIS-GA model performed better (AUCsuccessrate = 0.92; AUCpredictionrate = 0.91) than the ANFIS-FA model (AUCsuccessrate = 0.89; AUCpredictionrate = 0.88). The efficiency of these models was compared to a single ANFIS model and statistical analyses of paired comparisons revealed that the two meta-optimized predictive models significantly improved wildfire prediction accuracy compared to the single ANFIS model (AUCsuccessrate = 0.82; AUCpredictionrate = 0.78). We concluded that such predictive models may become valuable toolkits to effectively guide fire management plans and on-the-ground decisions on firefighting strategies.


Asunto(s)
Lógica Difusa , Incendios Forestales , Algoritmos , Ecosistema , Humanos , Irán , Redes Neurales de la Computación , Probabilidad
12.
Sci Total Environ ; 668: 1038-1054, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31018446

RESUMEN

The main objective of the present study was to provide a novel methodological approach for flash flood susceptibility modeling based on a feature selection method (FSM) and tree based ensemble methods. The FSM, used a fuzzy rule based algorithm FURIA, as attribute evaluator, whereas GA were used as the search method, in order to obtain optimal set of variables used in flood susceptibility modeling assessments. The novel FURIA-GA was combined with LogitBoost, Bagging and AdaBoost ensemble algorithms. The performance of the developed methodology was evaluated at the Bao Yen district and the Bac Ha district of Lao Cai Province in the Northeast region of Vietnam. For the case study, 654 floods and twelve geo-environmental variables were used. The predictive performance of each model was estimated through the calculation of the classification accuracy, the sensitivity, the specificity, the success and predictive rate curve and the area under the curves (AUC). The FURIA-GA FSM compared to a conventional rule based method gave more accurate predictive results. Also, the FURIA-GA based models, presented higher learning and predictive ability compared to the ensemble models that had not undergone a FSM. Based on the predictive classification accuracy, FURIA-GA-Bagging (93.37%) outperformed FURIA-GA-LogitBoost (92.35%) and FURIA-GA-AdaBoost (89.03%). FURIA-GA-Bagging showed also the highest sensitivity (96.94%) and specificity (89.80%). On the other hand, the FURIA-GA-LogitBoost showed the lowest percentage in very high susceptible zone and the highest relative flash-flood density, whereas the FURIA-GA-AdaBoost achieved the highest prediction AUC value (0.9740), based on the prediction rate curve, followed by FURIA-GA-Bagging (0.9566), and FURIA-GA-LogitBoost (0.8955). It can be concluded that the usage of different statistical metrics, provides different outcomes concerning the best prediction model, which mainly could be attributed to sites specific settings. The proposed models could be considered as a novel alternative investigation tools appropriate for flash flood susceptibility mapping.

13.
Sensors (Basel) ; 19(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022958

RESUMEN

Blue carbon (BC) ecosystems are an important coastal resource, as they provide a range of goods and services to the environment. They play a vital role in the global carbon cycle by reducing greenhouse gas emissions and mitigating the impacts of climate change. However, there has been a large reduction in the global BC ecosystems due to their conversion to agriculture and aquaculture, overexploitation, and removal for human settlements. Effectively monitoring BC ecosystems at large scales remains a challenge owing to practical difficulties in monitoring and the time-consuming field measurement approaches used. As a result, sensible policies and actions for the sustainability and conservation of BC ecosystems can be hard to implement. In this context, remote sensing provides a useful tool for mapping and monitoring BC ecosystems faster and at larger scales. Numerous studies have been carried out on various sensors based on optical imagery, synthetic aperture radar (SAR), light detection and ranging (LiDAR), aerial photographs (APs), and multispectral data. Remote sensing-based approaches have been proven effective for mapping and monitoring BC ecosystems by a large number of studies. However, to the best of our knowledge, this is the first comprehensive review on the applications of remote sensing techniques for mapping and monitoring BC ecosystems. The main goal of this review is to provide an overview and summary of the key studies undertaken from 2010 onwards on remote sensing applications for mapping and monitoring BC ecosystems. Our review showed that optical imagery, such as multispectral and hyper-spectral data, is the most common for mapping BC ecosystems, while the Landsat time-series are the most widely-used data for monitoring their changes on larger scales. We investigate the limitations of current studies and suggest several key aspects for future applications of remote sensing combined with state-of-the-art machine learning techniques for mapping coastal vegetation and monitoring their extents and changes.

14.
Sci Total Environ ; 664: 296-311, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743123

RESUMEN

Geospatial computation, data transformation to a relevant statistical software, and step-wise quantitative performance assessment can be cumbersome, especially when considering that the entire modelling procedure is repeatedly interrupted by several input/output steps, and the self-consistency and self-adaptive response to the modelled data and the features therein are lost while handling the data from different kinds of working environments. To date, an automated and a comprehensive validation system, which includes both the cutoff-dependent and -independent evaluation criteria for spatial modelling approaches, has not yet been developed for GIS based methodologies. This study, for the first time, aims to fill this gap by designing and evaluating a user-friendly model validation approach, denoted as Performance Measure Tool (PMT), and developed using freely available Python programming platform. The considered cutoff-dependent criteria include receiver operating characteristic (ROC) curve, success-rate curve (SRC) and prediction-rate curve (PRC), whereas cutoff-independent consist of twenty-one performance metrics such as efficiency, misclassification rate, false omission rate, F-score, threat score, odds ratio, etc. To test the robustness of the developed tool, we applied it to a wide variety of geo-environmental modelling approaches, especially in different countries, data, and spatial contexts around the world including, the USA (soil digital modelling), Australia (drought risk evaluation), Vietnam (landslide studies), Iran (flood studies), and Italy (gully erosion studies). The newly proposed PMT is demonstrated to be capable of analyzing a wide range of environmental modelling results, and provides inclusive performance evaluation metrics in a relatively short time and user-convenient framework whilst each of the metrics is used to address a particular aspect of the predictive model. Drawing on the inferences, a scenario-based protocol for model performance evaluation is suggested.

15.
Sci Rep ; 8(1): 15364, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337603

RESUMEN

Adaptive neuro-fuzzy inference system (ANFIS) includes two novel GIS-based ensemble artificial intelligence approaches called imperialistic competitive algorithm (ICA) and firefly algorithm (FA). This combination could result in ANFIS-ICA and ANFIS-FA models, which were applied to flood spatial modelling and its mapping in the Haraz watershed in Northern Province of Mazandaran, Iran. Ten influential factors including slope angle, elevation, stream power index (SPI), curvature, topographic wetness index (TWI), lithology, rainfall, land use, stream density, and the distance to river were selected for flood modelling. The validity of the models was assessed using statistical error-indices (RMSE and MSE), statistical tests (Friedman and Wilcoxon signed-rank tests), and the area under the curve (AUC) of success. The prediction accuracy of the models was compared to some new state-of-the-art sophisticated machine learning techniques that had previously been successfully tested in the study area. The results confirmed the goodness of fit and appropriate prediction accuracy of the two ensemble models. However, the ANFIS-ICA model (AUC = 0.947) had a better performance in comparison to the Bagging-LMT (AUC = 0.940), BLR (AUC = 0.936), LMT (AUC = 0.934), ANFIS-FA (AUC = 0.917), LR (AUC = 0.885) and RF (AUC = 0.806) models. Therefore, the ANFIS-ICA model can be introduced as a promising method for the sustainable management of flood-prone areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...