Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 852: 158285, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030874

RESUMEN

Fumigants are commonly used to control soil-borne pathogens of high-value crops, but they may also impact non-target soil microorganisms. Increasing interest in the use of sustainable management practices to control plant- and root-parasitic nematodes has resulted in the formulation of non-fumigant nematicides (chemicals or bionematicides) which are considered environmentally friendly alternatives to fumigants. However, the impact of these new products compared to standard fumigants on soil-borne pathogens, plant production, and the diversity and composition of non-target microbial communities in all crops remains unclear. To begin to address this knowledge gap, we examined the effect of fumigants commonly used in Florida (United States) strawberry production and newly formulated non-fumigant nematicides on nematode and weed control, plant growth, crop yield, and bacterial and fungal community diversity and predicted functionality. We found the standard fumigants increased crop yields and reduced weed pressure more than non-fumigants. Both fumigants and non-fumigants were an efficient management strategy to control sting nematodes. Treatments also impacted the abundance of specific beneficial and antagonistic taxa. Both fumigants and non-fumigants reduced soil bacterial and fungal diversity, an effect that remained for six months, thus suggesting a potential residual impact of these products on soil microorganisms. However, only fumigants altered soil microbial community composition and reduced network complexity, inducing a decrease or even a loss of some predicted bacterial and fungal functions, particularly during the first weeks after fumigation. Nevertheless, soil collected at the end of the season showed significant levels of root-knot nematode suppression in a growth chamber experiment, irrespective of the previous treatment. By linking the effect of fumigants and non-fumigants on soil-borne pests, plant and production, and the soil microbiome, this study increases our knowledge regarding the environmental impact of these products.


Asunto(s)
Fragaria , Nematodos , Plaguicidas , Animales , Suelo , Microbiología del Suelo , Control de Malezas , Antinematodos , Bacterias , Productos Agrícolas
2.
Front Microbiol ; 12: 726504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899622

RESUMEN

Among 200 fungal strains isolated from the soil, only one culture filtrate of Aspergillus flavus JCK-4087 showed strong nematicidal activity against Meloidogyne incognita. The nematicidal metabolite isolated from the culture filtrate of JCK-4087 was identified as cyclopiazonic acid (CPA). Because JCK-4087 also produced aflatoxins, six strains of Penicillium commune, which have been reported to be CPA producers, were obtained from the bank and then tested for their CPA productivity. CPA was isolated from the culture filtrate of P. commune KACC 45973. CPA killed the second-stage juveniles of M. incognita, M. hapla, and M. arearia with EC50-3 days 4.50, 18.82, and 60.51 µg mL-1, respectively. CPA also significantly inhibited egg hatch of M. incognita and M. hapla after a total of 28 days of treatment with the concentrations > 25 µg mL-1. The enhancement of CPA production by P. commune KACC 45973 was explored using an optimized medium based on Plackett-Burman design (PBD) and central composite design (CCD). The highest CPA production (381.48 µg mL-1) was obtained from the optimized medium, exhibiting an increase of 7.88 times when compared with that from potato dextrose broth culture. Application of the wettable power-type formulation of the ethyl acetate extract of the culture filtrate of KACC 45973 reduced gall formation and nematode populations in tomato roots and soils under greenhouse conditions. These results suggest that CPA produced by P. commune KACC 45973 can be used as either a biochemical nematicide or a lead molecule for developing chemical nematicides to control root-knot nematodes.

3.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860253

RESUMEN

Soil fumigation remains the standard practice to manage soilborne pathogens such as plant-parasitic nematodes, bacteria, and fungi, especially in high-value crops. However, increasing regulatory pressure due to the inherent and broad-spectrum toxicity and negative environmental impact of chemical soil fumigants, its negative effect on overall soil health, and increasing demand for organic produce, has created a growing interest in biological fumigants. Many plants and microorganisms emit volatile compounds, which can potentially be used as bio-fumigants. In this mini-review, we summarize the current status of nematology studies focused on the development of volatile compounds emitted from plants and microorganisms as fumigants to control plant-parasitic nematodes. The gap of knowledge and challenges of studying volatile compounds are also addressed.

4.
Plant Dis ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926199

RESUMEN

Thai basil (Ocimum basilicum var. thyrsiflora) is an important ethnic aromatic herb native to Southeast Asia. According to the Vegetable Production Handbook of Florida 2020-2021, Asian vegetables are currently grown on more than 4,000 ha in Florida, and Thai basil is one of the most commonly grown among these. Meloidogyne spp. cause severe damage to different basil cultivars (Brito et al. 2007). During May-July 2020, plant stunting and galled root symptoms were observed on Thai basil plants sampled from a commercial Asian vegetable farm in Wimauma, Florida (27°44.951' N; 82°16.271' E); 1,972 root-knot nematode second-stage juveniles (J2s) were extracted from 200 cm3 soil. A pathogenicity test was performed in September 2020 at the University of Florida Gulf Coast Research and Education Center, Wimauma, Florida. Ten of 20, three-week-old nematode-free Thai basil plants were inoculated with 5,000 eggs of field nematode cultures. Two months after inoculation (temperature = 22.8 ± 3.8 °C, relative humidity = 85.6 ± 14.0 %), average gall index (Bridge and Page 1980) = 5.4 ± 1.1 were only observed in inoculated plants, and 69,276 ± 18,904 eggs were extracted from roots using the NaClO method (Hussey and Barker 1973); 5 ± 7 J2s / 200 cc soil were recovered by the modified Baermann funnel technique (Forge and Kimpinski 2007). Nematode reproduction factor (RF) = 13.86 ± 3.78 (Nicol et al. 2010). Morphological measurements (mean, standard deviation and range) of J2s (n=20) included body length = 394.0 ± 22.3 (362.8 - 437.9) µm, body width = 15.7 ± 1.2 (13.6 - 18.3) µm, and stylet length = 12.8 ± 1.1 (10.4-14.5) µm. The perineal pattern of matured female (n=5) was oval-shaped with coarse and smooth striate; the dorsal arch was high and round; no lateral line presented. Morphological characteristics of females and J2s were consistent with those described for M. enterolobii (Yang and Eisenback 1983). DNA was extracted from a single female picked from infected Thai basil root using NaOH digestion method (Hübschen et al. 2004). The D2-D3 expansion segment of 28S rDNA and the COXII region on mitochondrial DNA were amplified by PCR using the primers 28S391a/28S501 and C2F3/1108 (Ye et al. 2020); the species was also confirmed with species-specific primers Me-F/Me-R (Ye et al. 2020). PCR products were sequenced by the Genomic Sciences Laboratory (North Carolina State University, Raleigh, NC, USA) and the results were recorded in the NCBI with GeneBank Accession Nos. MW488150 and MW507374. The sequences showed 100% identity with M. enterolobii in D2/D3 (KP901079, KP411230) and COXII (MN809527, KX214350). M. enterolobii (M. mayaguensis) has been reported on sweet basil in Florida (Brito et al. 2008). To our knowledge, this is the first detection of M. enterolobii on Thai basil in Hillsborough County, Florida. It is not clear to what extent M. enterolobii reduces the yield of Thai basil, but the RF value obtained in the pathogenicity test indicates the crop is certainly a very good host. Limited information is available on the distribution of M. enterolobii in Florida and the US. M. enterolobii is known to break down the root-knot resistance of crops including soybean, sweet potatoes, and tomatoes (Philbrick et al. 2020). This nematode is considered one of the major emerging threats to agriculture in the southeastern US. A multistate research and outreach program (FINDMe program) was initiated in 2019 to study the distribution and management of this nematode in the southeastern US.

5.
J Nematol ; 50(1): 27-32, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30335909

RESUMEN

Steinernema carpocapsae is an entomopathogenic nematode widely studied for its properties as a biocontrol agent in insect pest management and as a model for understanding bacterial symbioses. Less attention has been given to the development of specific anatomical structures within S. carpocapsae. A better understanding of entomopathogenic nematode development and anatomy may lead to improved biocontrol efficacy. We recently demonstrated that the neuroanatomy of S. carpocapsae IJs differs from the dauer stage of Caenorhabditis elegans. Here, we used in vitro cultures of S. carpocapsae to examine the early development of the ventral nerve cord (VNC). Similar to C. elegans, S. carpocapsae hatches as a J1 with a VNC containing only a fraction of the neurons found in later developmental stages. During J1 development, S. carpocapsae adds additional cells to the VNC to establish the complete set of neurons. During our examination of the VNC, we also noted variable gonad arm development among S. carpocapsae individuals. Using synchronized in vitro cultures, we found that the gonad migration pattern in S. carpocapsae was distinct from both C. elegans and the Diplogaster nematode Pristionchus pacificus. The S. carpocapsae gonad arm migration was highly variable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...