Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(5): 1238-1251, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414244

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.


Asunto(s)
Antígenos CD20 , Linfocitos B , Modelos Animales de Enfermedad , Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antígenos CD20/metabolismo , Antígenos CD20/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Virus de la Inmunodeficiencia de los Simios/inmunología , Inmunoterapia Adoptiva/métodos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Infecciones por VIH/terapia , Infecciones por VIH/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , VIH-1/inmunología , Carga Viral , Macaca mulatta
2.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33400687

RESUMEN

Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Antígenos VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Adulto , Anciano , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Estudios de Cohortes , Femenino , Granzimas/metabolismo , Infecciones por VIH/virología , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/inmunología , Humanos , Evasión Inmune , Interferón gamma/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Linfocitos T/efectos de los fármacos , Carga Viral , Adulto Joven
3.
J Clin Invest ; 130(11): 5847-5857, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33016926

RESUMEN

BACKGROUNDHIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODSSamples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTSHIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSIONThese findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDINGNational Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.


Asunto(s)
Infecciones por VIH , VIH-1/inmunología , ARN Viral/inmunología , Linfocitos T , Viremia , Integración Viral , Antirretrovirales , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/genética , Humanos , Intrones/inmunología , Masculino , ARN Viral/genética , Linfocitos T/inmunología , Linfocitos T/virología , Viremia/genética , Viremia/inmunología
4.
PLoS One ; 14(1): e0211112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682108

RESUMEN

Blockade of the programmed cell death protein/ligand 1 (PD-1/PD-L1) pathway with monoclonal antibodies (mAb) is now commonly used for cancer immunotherapy and has therapeutic potential in chronic viral infections including HIV-1. PD-1/PD-L1 blockade could augment HIV-1-specific immune responses and reverse HIV-1 latency, but the latter effect has not been clearly shown. We tested the ability of the human anti-PD-L1 mAb BMS-936559 and the human anti-PD-1 mAb nivolumab to increase HIV-1 virion production ex vivo from different peripheral blood mononuclear cell populations obtained from donors on suppressive antiretroviral therapy (ART). Fresh peripheral blood mononuclear cells (PBMC), CD8-depleted PBMC, total CD4+ T cells, and resting CD4+ T cells were purified from whole blood of HIV-1-infected donors and cultured in varying concentrations of BMS-936559 (20, 5, or 1.25µg/mL) or nivolumab (5 or 1.25µg/mL), with or without anti-CD3/CD28 stimulatory antibodies. Culture supernatants were assayed for virion HIV-1 RNA by qRT-PCR. Ex vivo exposure to BMS-936559 or nivolumab, with or without anti-CD3/CD28 stimulation, did not consistently increase HIV-1 virion production from blood mononuclear cell populations. Modest (2-fold) increases in virus production were observed in a subset of donors and in some cell types but were not reproducible in longitudinal samples. Cell surface expression of PD-1 and PD-L1 were not associated with changes in virus production. Ex vivo blockade of the PD-1 axis alone has limited effects on HIV-1 latency.


Asunto(s)
Antirretrovirales/farmacología , Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Nivolumab/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Virión/metabolismo , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Anticuerpos Monoclonales Humanizados , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Receptor de Muerte Celular Programada 1/metabolismo
6.
PLoS Pathog ; 13(3): e1006283, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28328934

RESUMEN

The major obstacle to curing HIV infection is the persistence of cells with intact proviruses that can produce replication-competent virus. This HIV reservoir is believed to exist primarily in CD4+ T-cells and is stable despite years of suppressive antiretroviral therapy. A potential mechanism for HIV persistence is clonal expansion of infected cells, but how often such clones carry replication-competent proviruses has been controversial. Here, we used single-genome sequencing to probe for identical HIV sequence matches among viruses recovered in different viral outgrowth cultures and between the sequences of outgrowth viruses and proviral or intracellular HIV RNA sequences in uncultured blood mononuclear cells from eight donors on suppressive ART with diverse proviral populations. All eight donors had viral outgrowth virus that was fully susceptible to their current ART drug regimen. Six of eight donors studied had identical near full-length HIV RNA sequences recovered from different viral outgrowth cultures, and one of the two remaining donors had identical partial viral sequence matches between outgrowth virus and intracellular HIV RNA. These findings provide evidence that clonal expansion of HIV-infected cells is an important mechanism of reservoir persistence that should be targeted to cure HIV infection.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Fármacos Anti-VIH/uso terapéutico , Humanos , Reacción en Cadena de la Polimerasa , Carga Viral/genética
7.
PLoS Pathog ; 13(2): e1006230, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28225830

RESUMEN

The fate of HIV-infected cells after reversal of proviral latency is not well characterized. Simonetti, et al. recently showed that CD4+ T-cells containing intact proviruses can clonally expand in vivo and produce low-level infectious viremia. We hypothesized that reversal of HIV latency by activation of CD4+ T-cells can lead to the expansion of a subset of virus-producing cells rather than their elimination. We established an ex vivo cell culture system involving stimulation of CD4+ T-cells from donors on suppressive antiretroviral therapy (ART) with PMA/ionomycin (day 1-7), followed by rest (day 7-21), and then repeat stimulation (day 21-28), always in the presence of high concentrations of raltegravir and efavirenz to effectively block new cycles of viral replication. HIV DNA and virion RNA in the supernatant were quantified by qPCR. Single genome sequencing (SGS) of p6-PR-RT was performed to genetically characterize proviruses and virion-associated genomic RNA. The replication-competence of the virions produced was determined by the viral outgrowth assay (VOA) and SGS of co-culture supernatants from multiple time points. Experiments were performed with purified CD4+ T-cells from five consecutively recruited donors who had been on suppressive ART for > 2 years. In all experiments, HIV RNA levels in supernatant increased following initial stimulation, decreased or remained stable during the rest period, and increased again with repeat stimulation. HIV DNA levels did not show a consistent pattern of change. SGS of proviruses revealed diverse outcomes of infected cell populations, ranging from their apparent elimination to persistence and expansion. Importantly, a subset of infected cells expanded and produced infectious virus continuously after stimulation. These findings underscore the complexity of eliminating reservoirs of HIV-infected cells and highlight the need for new strategies to kill HIV-infected cells before they can proliferate.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/virología , Activación Viral/fisiología , Latencia del Virus/fisiología , Fármacos Anti-VIH/uso terapéutico , Células Cultivadas , Citometría de Flujo , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Activación de Linfocitos/inmunología
8.
J Virol ; 90(3): 1673-6, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26559835

RESUMEN

Quantifying induced virion production from single proviruses is important for assessing the effects of HIV-1 latency reversal agents. Limiting dilution ex vivo cultures of resting CD4(+) T cells from 14 HIV-positive volunteers revealed that virion production after T-cell activation from individual proviruses varies by 10,000-fold to 100,000-fold. High-producing proviruses were associated with increases in cell-associated HIV-1 DNA levels, suggesting that reactivated proviruses proliferate. Single-cell analyses are needed to investigate differences in proviral expansion and virus production following latency reversal.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Activación de Linfocitos , Provirus/fisiología , Virión/aislamiento & purificación , Activación Viral , Replicación Viral , Células Cultivadas , ADN Viral/análisis , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...