Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Magn Part Imaging ; 6(2 Suppl 1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-34124341

RESUMEN

Thermometry based on magnetic nanoparticles (MNPs) is an emerging technology that allows for remote temperature measurements throughout a volume that are impossible to achieve using conventional probe-based or optical methods. This metrology is based on the temperature-dependent nature of these particles' magnetization; however, commercially available MNPs generally display insufficient magneto-thermosensitivity for practical use in applications near room temperature. Here we present engineered MNPs based on cobalt-doped ferrites developed for 200 K - 400 K thermometry applications. The synthesis relies on easily scalable solution chemistry routes, and is tunable to afford MNPs of controlled size and composition. These improved nanothermometers form the basis of our effort to develop a practical means for spatially resolved, 3D, high-sensitivity measurements of temperature based on AC magnetometry.

2.
Opt Express ; 27(3): 1911-1921, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732237

RESUMEN

We have developed a dispersive spectrometer by using a compact immersion grating for direct frequency comb spectroscopy in the long-wave infrared region of 8-10 µm for the first time. A frequency resolution of 460 MHz is achieved, which is the highest reported in this wavelength region with a dispersive spectrometer. We also demonstrate individual comb mode-resolved imaging by cavity filtering and apply this to obtain spectra of both simple and complex molecular spectra. These results indicate that the immersion grating spectrometer offers the next advancement for sensitive, high-resolution spectroscopy of transient and large/complex molecules when combined with cavity enhancement and cooling techniques.

3.
Science ; 354(6311): 444-448, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789837

RESUMEN

The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...